Papers using Ferrite
Ferrite has been used in a number of scientific publications, as shown by the reference list below. If you are using Ferrite when preparing a manuscript, please cite Ferrite according to CITATION.cff
After publication, please open a pull request to add your paper to ferritepapers.bib, which will make it appear in the list below. If you are unsure how to do that, you can also add your bib-entry to the following issue.
2025
Weiland, T.; Pförtner, M. and Hennig, P. (03–05 May 2025). Flexible and Efficient Probabilistic PDE Solvers through Gaussian Markov Random Fields. In: Proceedings of The 28th International Conference on Artificial Intelligence and Statistics, Vol. 258 of Proceedings of Machine Learning Research, edited by Li, Y.; Mandt, S.; Agrawal, S. and Khan, E. (PMLR); pp. 2746–2754.
Ogiermann, D.; Balzani, D. and Perotti, L. E. (Jul 2025). Analyzing the Impact of Different Microstructure and Active Stress Models on Peak Systolic Kinematics. In: Functional Imaging and Modeling of the Heart (Springer, Cham); pp. 305–318.
Bian, P.-L.; Liu, Q.; Zhang, H.; Qing, H.; Schmauder, S. and Yu, T. (2025). Adaptive phase-field cohesive-zone model for simulation of mixed-mode interfacial and bulk fracture in heterogeneous materials with directional energy decomposition. Computer Methods in Applied Mechanics and Engineering 443, 118062.
Bian, P.-L.; Qing, H.; Schmauder, S. and Yu, T. (2025). A variationally-consistent phase-field cohesive zone model for mixed-mode fracture with directional energy decomposition scheme and modified-G criterion. International Journal of Engineering Science 210, 104223.
Altmann, R.; Hermann, M.; Peterseim, D. and Stykel, T. (2025). Riemannian optimization methods for ground states of multicomponent Bose–Einstein condensates. IMA Journal of Numerical Analysis.
Martin, R. J.; Ghiba, I.-D.; Köhler, M.; Balzani, D.; Sander, O. and Neff, P. (2025). Quasiconvex relaxation of planar Biot-type energies and the role of determinant constraints, arXiv:2501.10853.
Auth, K. L.; Brouzoulis, J. and Ekh, M. (2025). Phase-Field Modeling of Ductile Fracture Across Grain Boundaries in Polycrystals. International Journal for Numerical Methods in Engineering 126.
2024
Blaszczyk, M. and Hackl, K. (2024). On the effects of a surrounding medium and phase split in coupled bone simulations. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 104, e202200595, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/zamm.202200595.
Blaszczyk, M. and Hackl, K. (2024). On the influence of the microstructure on multiscale bone simulations. PAMM 24, e202400040, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/pamm.202400040.
Bian, P.-L.; Qing, H.; Yu, T. and Schmauder, S. (2024). A novel and simple variationally-consistent phase-field cohesive zone model for mixed-mode fracture. Theoretical and Applied Fracture Mechanics 130, 104324.
Bian, P.-L.; Qing, H.; Schmauder, S. and Yu, T. (2024). A unified phase-field method-based framework for modeling quasi-brittle fracture in composites with interfacial debonding. Composite Structures 327, 117647.
Balzani, D.; Köhler, M.; Neumeier, T.; Peter, M. A. and Peterseim, D. (2024). Multidimensional rank-one convexification of incremental damage models at finite strains. Computational Mechanics 73, 27–47, arXiv:2211.14318.
Geisler, H. and Junker, P. (2024). Efficient and accurate uncertainty quantification in engineering simulations using time-separated stochastic mechanics. Archive of Applied Mechanics 94, 2603–2617.
Börjesson, E.; Verhoosel, C. V.; Remmers, J. J. and Fagerström, M. (2024). Meso-scale modelling of complex fibre composite geometries using an immersed boundary method. Finite Elements in Analysis and Design 242, 104262.
Auth, K. L.; Brouzoulis, J. and Ekh, M. (2024). A thermodynamic framework for ductile phase-field fracture and gradient-enhanced crystal plasticity. European Journal of Mechanics, A/Solids 108, 105418.
2023
Ogiermann, D.; Balzani, D. and Perotti, L. E. (Jun 2023). An Extended Generalized Hill Model for Cardiac Tissue: Comparison with Different Approaches Based on Experimental Data. In: Functional Imaging and Modeling of the Heart (Springer Nature Switzerland, Cham); pp. 555–564.
Köhler, M. and Balzani, D. (2023). Evolving microstructures in relaxed continuum damage mechanics for the modeling of strain softening. Journal of the Mechanics and Physics of Solids 173, 105199.
Börjesson, E.; Larsson, F.; Runesson, K.; Remmers, J. J. and Fagerström, M. (2023). Variationally consistent homogenisation of plates. Computer Methods in Applied Mechanics and Engineering 413, 116094.
Kristensen, P. K.; Golahmar, A.; Martínez-Pañeda, E. and Niordson, C. F. (2023). Accelerated high-cycle phase field fatigue predictions. European Journal of Mechanics, A/Solids 100.
Auth, K. L.; Brouzoulis, J. and Ekh, M. (2023). Modeling of environmentally assisted intergranular crack propagation in polycrystals. International Journal for Numerical Methods in Engineering 124, 5183–5199.
2022
Blaszczyk, M. and Hackl, K. (2022). Multiscale modeling of cancellous bone considering full coupling of mechanical, electric and magnetic effects. Biomechanics and Modeling in Mechanobiology 21, 163–187.
Köhler, M.; Junker, P. and Balzani, D. (2022). Continuum multiscale modeling of absorption processes in micro- and nanocatalysts. Archive of Applied Mechanics 92, 2207–2223.
Köhler, M.; Neumeier, T.; Melchior, J.; Peter, M. A.; Peterseim, D. and Balzani, D. (2022). Adaptive convexification of microsphere-based incremental damage for stress and strain softening at finite strains. Acta Mechanica 233, 4347–4364.
Börjesson, E.; Remmers, J. J. and Fagerström, M. (2022). An adaptive isogeometric shell element for the prediction of initiation and growth of multiple delaminations in curved composite structures. Computers and Structures 260, 106701.
Börjesson, E.; Remmers, J. J. and Fagerström, M. (2022). A generalised path-following solver for robust analysis of material failure. Computational Mechanics 70, 437–450.
Ekre, F.; Larsson, F.; Runesson, K. and Jänicke, R. (2022). Numerical Model Reduction with error estimation for computational homogenization of non-linear consolidation. Computer Methods in Applied Mechanics and Engineering 389, 114334.
Amores, V. J.; Montáns, F. J.; Cueto, E. and Chinesta, F. (2022). Crossing Scales: Data-Driven Determination of the Micro-scale Behavior of Polymers From Non-homogeneous Tests at the Continuum-Scale. Frontiers in Materials 9, 1–13.
Auth, K. L.; Brouzoulis, J. and Ekh, M. (2022). A fully coupled chemo-mechanical cohesive zone model for oxygen embrittlement of nickel-based superalloys. Journal of the Mechanics and Physics of Solids 164, 104880.
2020
Ekre, F.; Larsson, F.; Runesson, K. and Jänicke, R. (2020). A posteriori error estimation for numerical model reduction in computational homogenization of porous media. International Journal for Numerical Methods in Engineering 121, 5350–5380.
2019
Carlsson, K.; Larsson, F. and Runesson, K. (2019). Bounds on the effective response for gradient crystal inelasticity based on homogenization and virtual testing. International Journal for Numerical Methods in Engineering 119, 281–304, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.6050.
Ekre, F.; Larsson, F. and Runesson, K. (2019). On error controlled numerical model reduction in FE2-analysis of transient heat flow. International Journal for Numerical Methods in Engineering 119, 38–73.
2017
Carlsson, K.; Runesson, K.; Larsson, F. and Ekh, M. (2017). A comparison of the primal and semi-dual variational formats of gradient-extended crystal inelasticity. Computational Mechanics 60, 531–548.