Cited literature

[1]
G. A. Holzapfel. Nonlinear Solid Mechanics: A Continuum Approach for Engineering (Wiley, Chichester ; New York, 2000).
[2]
[3]
[4]
D. N. Arnold, F. Brezzi, B. Cockburn and L. D. Marini. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems. SIAM Journal on Numerical Analysis 39, 1749–1779 (2002). Accessed on Dec 20, 2023.
[5]
[6]
S. Bartels, C. Carstensen and G. Dolzmann. Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis. Numerische Mathematik 99, 1–24 (2004).
[7]
[8]
[9]
F. D. Witherden and P. E. Vincent. On the identification of symmetric quadrature rules for finite element methods. Computers & Mathematics with Applications 69, 1232–1241 (2015).
[10]
M. Crouzeix and P.-A. Raviart. Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. Revue française d'automatique informatique recherche opérationnelle. Mathématique 7, 33–75 (1973).
[11]
R. Rannacher and S. Turek. Simple nonconforming quadrilateral Stokes element. Numerical Methods for Partial Differential Equations 8, 97–111 (1992).
[12]
[13]
M. Cenanovic. Finite element methods for surface problems. Ph.D. Thesis, Jönköping University, School of Engineering (2017).
[14]
[15]
[16]