
Discontinuous Galerkin Methods Infrastructure:
A GSoC Project

Abdulaziz Hamid - GSoC 2023 contributor @ Ferrite.jl - CompEng student 1

Background on DG
Degrees of freedom on the interface are not shared

Abdulaziz Hamid - GSoC 2023 contributor @ Ferrite.jl - CompEng student 2

Background on DG
Degrees of freedom on the interface are not shared
Interface integral term exists in the weak form

Usually in form of

Where is the test function, is the numerical flux, and is the normal to the
current side of the interface.

 ν ⋅∑K ∫∂K σ̂ nds

ν σ̂ n

Abdulaziz Hamid - GSoC 2023 contributor @ Ferrite.jl - CompEng student 3

Background on DG
Degrees of freedom on the interface are not shared
Interface integral term exists in the weak form

Usually in form of

Introduces jumps and averages

 ν ⋅
K

∑ ∫
∂K

σ̂ nds = [[ν]] ⋅∫
Γ

{ }ds+σ̂ {ν}[[]]ds∫
Γ0

σ̂

Where

{u} = (u +
2
1 + u), [[u]] =− u ⋅+ n ++ u ⋅− n−

 ν ⋅∑K ∫∂K σ̂ nds

Abdulaziz Hamid - GSoC 2023 contributor @ Ferrite.jl - CompEng student 4

Background on DG
Degrees of freedom on the interface are not shared
Interface integral term exists in the weak form

Usually in form of

Introduces jumps and averages
Quadrature points on the interface must be synced

 ν ⋅∑K ∫∂K σ̂ nds

Abdulaziz Hamid - GSoC 2023 contributor @ Ferrite.jl - CompEng student 5

Required modifications
Sparsity Patterns
Constraints
Assembly

Iterators
Jumps and Averages
Quadrature points

Abdulaziz Hamid - GSoC 2023 contributor @ Ferrite.jl - CompEng student 6

u1 u2
u3 u4

Sparsity patterns
Elements are coupled using shared dofs in
Continuous Galerkin

julia> K = create_sparsity_pattern(dh)
4×4 SparseArrays.SparseMatrixCSC{Float64,
 Int64} with 10 stored entries:
 0.0 0.0 . .
 0.0 0.0 0.0 .
 . 0.0 0.0 0.0
 . . 0.0 0.0

Abdulaziz Hamid - GSoC 2023 contributor @ Ferrite.jl - CompEng student 7

u1
u2

u3
u4

u5 u6

Sparsity patterns
Elements don't share dofs in DG, thus are coupled
using numerical flux in the interface integral term.

julia> K = create_sparsity_pattern(dh)
6×6 SparseArrays.SparseMatrixCSC{Float64,
 Int64} with 12 stored entries:
 0.0 0.0 ⋅ ⋅ ⋅ ⋅
 0.0 0.0 ⋅ ⋅ ⋅ ⋅
 ⋅ ⋅ 0.0 0.0 ⋅ ⋅
 ⋅ ⋅ 0.0 0.0 ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ 0.0 0.0
 ⋅ ⋅ ⋅ ⋅ 0.0 0.0

Abdulaziz Hamid - GSoC 2023 contributor @ Ferrite.jl - CompEng student 8

u1
u2

u3
u4

u5 u6

Sparsity patterns
Elements don't share dofs in DG, thus are coupled
using numerical flux in the interface integral term.

julia> K = create_sparsity_pattern(dh;
 topology = topology, cross_coupling=trues(1,1))
6×6 SparseArrays.SparseMatrixCSC{Float64,
 Int64} with 28 stored entries:
 0.0 0.0 0.0 0.0 . .
 0.0 0.0 0.0 0.0 . .
 0.0 0.0 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0 0.0 0.0
 . . 0.0 0.0 0.0 0.0
 . . 0.0 0.0 0.0 0.0

Abdulaziz Hamid - GSoC 2023 contributor @ Ferrite.jl - CompEng student 9

Sparsity patterns

Implementation

cross_element_coupling!

Issues faced (solved)

Type instablilities (i.e., getnbasefunctions(fi::Interpolation)::Any).
Allocations

Abdulaziz Hamid - GSoC 2023 contributor @ Ferrite.jl - CompEng student 10

Constraints
DG elements can have their dofs in the interior of the cell, thus dirichlet
boundary conditions enforced using penalty terms.
For elements with dofs on the boundary, strong enforcement is done using
DofHandler

Abdulaziz Hamid - GSoC 2023 contributor @ Ferrite.jl - CompEng student 11

Constraints

Implementation

dirichlet_boundarydof_indices

dirichlet_(face|vertex|edge)dof_indices

(face|vertex|edge)dof_indices are empty for DiscontinuousLagrange .

Abdulaziz Hamid - GSoC 2023 contributor @ Ferrite.jl - CompEng student 12

Iterators

Implementation

InterfaceCache

Two FaceCache s
dofs

InterfaceIterator

Abdulaziz Hamid - GSoC 2023 contributor @ Ferrite.jl - CompEng student 13

uhere

uthere

nhere nthere

Jumps and averages

Implementation

InterfaceValues
Two FaceValue s

Jumps use

(shape|function)_(value|gradient
)_(jump|average)

[[u]] = u −there uhere

Abdulaziz Hamid - GSoC 2023 contributor @ Ferrite.jl - CompEng student 14

Syncing quadrature points

Abdulaziz Hamid - GSoC 2023 contributor @ Ferrite.jl - CompEng student 15

Syncing quadrature points
options:

Transform using a transformation matrix.
Permute the existing values using cached permutations.
Cache values for each interface case.

Chosen:

Transforming using a transformation matrix as other options can be too
much caching.

Abdulaziz Hamid - GSoC 2023 contributor @ Ferrite.jl - CompEng student 16

Syncing quadrature points

Implementation

InterfaceTransformation struct
get_transformation_matrix(::InterfaceTransformation)

transform_interface_points!

quadrature points are transformed on each reinit!

Abdulaziz Hamid - GSoC 2023 contributor @ Ferrite.jl - CompEng student 17

Syncing quadrature points
flipping = SMatrix{3,3}(1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 1.0)

translate_1 = SMatrix{3,3}(1.0, 0.0, 0.0, 0.0, 1.0, 0.0, -sinpi(2/3)/3, -0.5, 1.0)
stretch_1 = SMatrix{3,3}(sinpi(2/3), 0.5, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0)

translate_2 = SMatrix{3,3}(1.0, 0.0, 0.0, 0.0, 1.0, 0.0, sinpi(2/3)/3, 0.5, 1.0)
stretch_2 = SMatrix{3,3}(1/sinpi(2/3), -1/2/sinpi(2/3), 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0)

return stretch_2 * translate_2 * rotation_matrix_pi(-θpre) * flipping * rotation_matrix_pi(θ + θpre) * translate_1 * stretch_1

Abdulaziz Hamid - GSoC 2023 contributor @ Ferrite.jl - CompEng student 18

Syncing quadrature points

Abdulaziz Hamid - GSoC 2023 contributor @ Ferrite.jl - CompEng student 19

Heat equation tutorial*

Interior penalty formulation

 ∇u ⋅∫
Ω

∇δudΩ − [[u]] ⋅∫
Γ

{∇δu} + [[δu]] ⋅ {∇u}dΓ + μ[[u]].[[δu]]dΓ =∫
Γ

 δudΩ,∫
Ω

*based on "Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems" by Douglas N. Arnold, F. Brezzi, B. Cockburn,
and L. Donatella Marini

Abdulaziz Hamid - GSoC 2023 contributor @ Ferrite.jl - CompEng student 20

Heat equation tutorial

Convergence test results:

[Info: order = 1
[Info: mean order of convergence for L2 = 1.996
[Info: mean order of convergence for H1 = 0.999

[Info: order = 3
[Info: mean order of convergence for L2 = 3.986
[Info: mean order of convergence for H1 = 2.997

ΔLog (L2) ≈2 P + 1, ΔLog (H1) ≈2 P

Abdulaziz Hamid - GSoC 2023 contributor @ Ferrite.jl - CompEng student 21

Future Work
Arbitrary order interpolations (Done for Lagrange with hypercubes).
Better method to work with mixed grids.
Interface with AMR.

Abdulaziz Hamid - GSoC 2023 contributor @ Ferrite.jl - CompEng student 22

