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Problem Setup

𝐴𝑥 = 𝑏, 𝑓𝑖𝑛𝑑 𝑥 = ?
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𝑨

 Sparse:
Direct solvers (e.g., LU) 

 PDE: (e.g., 𝐷𝑖𝑣 𝜎 + 𝑏 = 0)
Conventional iterative methods will slow 
down as these systems grow larger



Problem Setup
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So, we need another sparse iterative solvers such that:

 Designed for PDEs (more or less)

 Independent of mesh size (at least in theory)

Luckily, we have:

 Multigrid methods

 Designed initially for elliptic PDEs

 Extended to handle other PDEs

AlgebraicMultigrid.jl

(AMG.jl)



But the grass isn‘t always greener on the other side !
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The Twist: AMG.jl isn‘t Perfect
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Current Problems in AlgebraicMultigrid.jl

 supports only for scalar-valued PDEs (e.g., Poisson’s equation −∆𝑢 𝑥 = 𝑓(𝑥))

 suffocates when dealing with systems come from higher order basis functions

Proposed Solutions

 Extend AMG.jl to handle vector-valued PDEs

 Add interface to accept user-defined near null space (nns)

 Develop FerriteMultigrid.jl: an implementation of polynomial multigrid methods

 Based on:

 Ferrite.jl

 AlgebraicMultigrid.jl



Roadmap
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 Multigrid Methods 101

 Basic Iterative Methods as Smoothers

 Error Behaviors Across Grids

 The Two-Level Method

 Smoothed aggregation (SA) in Algebraic Multigrid (AMG)

 Fixed Near Null Space (NNS)

 User Defined Near Null Space (NNS)

 Numerical Experiments

 FerriteMultigrid.jl: P- Multigrid Extension

 Why and How?

 Coarsening Strategies

 Package Interface

 Numerical Experiments

 Future Work and Possible Extensions
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Basic Iterative Methods as Smoothers
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𝐴𝑥 = 𝑏  

𝐴 ≔ 𝑀 − 𝑁

Update eq. :  𝑥(௞ାଵ) = 𝑀ିଵ𝑁𝑥(௞) + 𝑀ିଵ𝑏

Error eq.:  𝑒(௞ାଵ) = 𝐺𝑒(௞),       𝑤ℎ𝑒𝑟𝑒 𝐺 = 𝐼 − 𝑀ିଵ𝐴

NOTE:

 Easy to compute 𝑀ିଵ

 E.g., 

 Jacobi: 𝑀 = 𝐷

 Forward Gauss-Seidel: 𝑀 = 𝐷 − 𝐸

 Backward Gauss-Seidel: 𝑀 = 𝐷 − 𝐹



Basic Iterative Methods as Smothers
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𝑥(௞ାଵ) = 𝑀ିଵ𝑁𝑥(௞) + 𝑀ିଵ𝑏

𝑒(௞ାଵ) = (𝐼 − 𝑀ିଵ𝐴)𝑒(௞)

REMEMBER:Error propagation:

 Consider 1D Poisson problem (−𝑢ᇱᇱ 𝑥 = 𝑓(𝑥)) with 50 interior 
points.

 Selected eigenmodes:

Smooth error

Low frequency High frequency

Oscillatory error



Basic Iterative Methods as Smoothers
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𝑥(௞ାଵ) = 𝑀ିଵ𝑁𝑥(௞) + 𝑀ିଵ𝑏

𝑒(௞ାଵ) = (𝐼 − 𝑀ିଵ𝐴)𝑒(௞)

REMEMBER:Error propagation:

 Apply Gauss-Seidel error equation multiple times:

PersistSmooth error

AttenuatedOscillatory error



Error Behavior Across Grids
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REMEMBER:

 Compare between the same mode on different grids:

 E.g., Second mode on a fine grid (𝛀𝒉, 𝑛 = 7) and a coarse
grid (𝜴𝟐𝒉, 𝑛 = 3)

 Frequency increases as we go from fine to coarse grid.
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 By smoothing

 Low freq.→ persist

 High freq. → attenuated



The Two-Level Method
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REMEMBER:

 By smoothing

 Low freq. → persist

 High freq. → atenuated

 By coarsening

 Ω௛(smooth) Ωଶ௛ (oscillatory)

Ensure Robustness:

 Define near null space 𝐵 to be equivalent to the smooth error.

 𝑃 & 𝑅 operators must span 𝐵



Roadmap

A Tale of Two Multigrids: A- and P- Multigrid Methods in Vector-Valued PDEs13

 Multigrid Methods 101

 Basic Iterative Methods as Smoothers

 Error Behaviors Across Grids

 The Two-Level Method

 Smoothed aggregation (SA) in Algebraic Multigrid (AMG)

 Fixed Near Null Space (NNS)

 User Defined Near Null Space (NNS)

 Numerical Experiments

 FerriteMultigrid.jl: P- Multigrid Extension

 Why and How?

 Coarsening Strategies

 Package Interface

 Numerical Experiments

 Future Work and Possible Extensions



SA - AMG
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NOTE

 Two primary ways to construct prolongation and restriction operators:

 Smoothed Aggregation

 C/F splitting methods (e.g., Ruge-Stuben)

(our focus )



Fixed Near Null Space (NNS)
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Fixed Near Null Space (NNS)
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User Defined Near Null Space
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User Defined Near Null Space
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Numerical Experiments
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2D Linear Elasticity:

 NNS (𝐵) represents the rigid body modes:

 Translation in the 𝑥 − direction

 Translation in the 𝑦 − direction

 Rotation about 𝑧 − axis

𝐵 =

1 0 −𝑦ଵ

0 1 𝑥ଵ

1 0 −𝑦ଶ

0 1 𝑥ଶ

⋮ ⋮ ⋮
1 0 −𝑦௡

0 1 𝑥௡

∈ ℝଶ௡௫ଷ



Numerical Experiments
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2D Linear Elasticity:



Numerical Experiments
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Cantilever Beam:

 NNS (𝐵) represents the rigid body modes:

 Translation in the 𝑥 − direction

 Translation in the 𝑦 − direction

 Rotation about 𝑧 − axis

𝐵 =

1 0 −𝑦ଵ

0 1 𝑥ଵ

0 0 1
⋮ ⋮ ⋮
1 0 −𝑦௡

0 1 𝑥௡

0 0 1

∈ ℝଷ௡௫ଷ



Numerical Experiments
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Cantilever Beam



Roadmap
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Why and How?
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Why FerriteMultigrid.jl?



Why and How?
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How FerriteMultigrid.jl?

 Ferrite.jl → FEM infrastructure

 AlgebraicMultigrid.jl → coarse solver

P = 2

P = 1



Coarsening Strategies
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1. Galerkin Projection

2. Rediscretization

NOTE:

 𝐼௣ିଵ
௣ : prolongation operator

 𝐼௣
௣ିଵ: restriction operator

 𝑴௣: mass matrix on fine grid

 𝑷௣ିଵ
௣ : projection from coarse to 

fine grid

 Φ௣: shape functions at poly. 𝑝



Package Interface

A Tale of Two Multigrids | FerriteMultigrid.jl27



Results
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SA-AMG vs P-Multigrid (2D Linear Elasticity – Quadratic element approximation)



Results
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Galerkin vs Rediscretization (2D Linear Elasticity)



Future Work and Possible Extensions
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 Isogeometric analysis

 Theoretical foundation: 
https://www.sciencedirect.com/science/article/pii/S0045782520305326?via%3Dihub

 Learning-based AMG coarsening

 Theoretical foundation: https://openreview.net/pdf?id=xXYjxli-2i

 GitHub issue: https://github.com/JuliaLinearAlgebra/AlgebraicMultigrid.jl/issues/84

 Support for classical AMG with NNS

 Theoretical foundation: https://onlinelibrary.wiley.com/doi/10.1002/nla.688

 GitHub issue: https://github.com/JuliaLinearAlgebra/AlgebraicMultigrid.jl/issues/80
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