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Problem Setup

Ax = b, find x =7

A
l \
= Sparse: = PDE: (e.g., Div(c) + b = 0)
Direct solvers (e.g., LU) X Conventional iterative methods will slow

down as these systems grow larger
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Problem Setup

So, we need another sparse iterative solvers such that:

= Designed for PDEs (more or less)
= |Independent of mesh size (at least in theory)

@
Luckily, we have: juli.a
= Multigrid methods —
= Designed initially for elliptic PDEs AlgebraicMultigrid J
= Extended to handle other PDEs (AMG jl)
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But the grass isn‘t always greener on the other side !
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The Twist: AMG.jl isn‘t Perfect

Current Problems in AlgebraicMultigrid.jl

= supports only for scalar-valued PDEs (e.g., Poisson’s equation —Au(x) = f(x))
= suffocates when dealing with systems come from higher order basis functions

Proposed Solutions

= Extend AMG.jl to handle vector-valued PDEs
= Add interface to accept user-defined near null space (nns)
= Develop FerriteMultigrid.jl: an implementation of polynomial multigrid methods
= Based on:
= Ferrite.jl
= AlgebraicMultigrid.jl
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Roadmap

Multigrid Methods 101
= Basic lterative Methods as Smoothers

= Error Behaviors Across Grids
= The Two-Level Method

Smoothed aggregation (SA) in Algebraic Multigrid (AMG)

= Fixed Near Null Space (NNS)

= User Defined Near Null Space (NNS)

= Numerical Experiments
FerriteMultigrid.jl: P- Multigrid Extension
= Why and How?

= Coarsening Strategies

= Package Interface

= Numerical Experiments

Future Work and Possible Extensions
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Roadmap

= Multigrid Methods 101
= Basic lterative Methods as Smoothers

= Error Behaviors Across Grids
= The Two-Level Method
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Basic Iterative Methods as Smoothers

Update eq.: x*+D = M~1Nx(K) 4 p—1p

Error eq.: e®*D = Ge) where G =1 — M~ 1A

NOTE:

= Easy to compute M1

= E.g., —F
= Jacobi: M =D N\
» Forward Gauss-Seidel: M =D — FE
» Backward Gauss-Seidel: M =D — F
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Basic Iterative Methods as Smothers

Error propagation:

Consider 1D Poisson problem (—u''(x) = f(x)) with 50 interior

points.
Selected eigenmodes:
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Basic Iterative Methods as Smoothers

Error propagation:

= Apply Gauss-Seidel error equation multiple times:

Smooth error

>

Oscillatory error
>

Amplitude

Amplitude

Iter 0 (Smooth)
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REMEMBER:

x**+D = M=INxK) 4 p~1p
ekt = (] — M~ 14)e®
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Error Behavior Across Grids

= By smoothing

= Compare between the same mode on different grids: = Low freq.— persist
= E.g., Second mode on a fine grid (", n = 7) and a coarse = High freq. — attenuated
grid (22", n = 3)
» Frequency increases as we go from fine to coarse grid.

Fine grid : Q"

Prolongation
Restriction

Coarse grid : Q2h

0
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The Two-Level Method REMEMBER:

= By smoothing

Ensure Robustness: _
= Low freq. — persist

= Define near null space B to be equivalent to the smooth error. _
= High freq. —» atenuated

= P & R operators must span B _
= By coarsening

= 1. pre-smooth : Ahgh = ph 5. post-smooth : Alagh = ph H
5 =  0(smooth) & Q2" (oscillatory)
| o /\ /\
Fine grid : e —— Xt
# Multigrid Pillars
) residual eq. : r = " — Ahzh
22— R @j i )
b 5 olve error eq. using CAhoh _ h
A™ = RA'P e Two Level Method | & oF €4 A'e "

exact sol. : u = ul + ¢l

Coarse grid : (12" /\

A2Zh2h — 2h
.

...............................

Recursively apply the
Two Level Method

\
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Roadmap

= Smoothed aggregation (SA) in Algebraic Multigrid (AMG)
= Fixed Near Null Space (NNS)
= User Defined Near Null Space (NNS)
= Numerical Experiments
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SA - AMG

NOTE

= Two primary ways to construct prolongation and restriction operators:
= Smoothed Aggregation (our focus )
» C/F splitting methods (e.g., Ruge-Stuben)
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Algorithm 2 smoothed_aggregation(A)

4 n P ST A B TN
- 1: D — Onesk81zekﬂ, l))
Fixed Near Null Space (NNS) 2 while size(4) < nax-coarse do
3: Agqen, Boen, level = extend hierarchy(A, B)
4: A < AQZh, B — BQQh
s Aggregati _ .
M Al @ H— ot 5: end while
i3 @ @ (© e ol o e o _
1 @ B,
Agg.3 Agg. 4 1 @ B,
: : 1 e B’ Improved near
| @ By e
@ s @ ® | ® B: | - null space
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B, ® Q ® 1 3: b = zeros(size(A, 1), size(B,2))
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B, ® 8,1 o R 6: P = smooth(A,T)
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Algorithm 2 smoothed_aggregation(A)

. 1: B = ones(size(A,1)
Fixed Near Null Space (NNS) 2 while size(4) < nax coarze do
3: Agqen, Boen, level = extend hierarchy(A, B)
4: A < AQZh, B — BQQh
=7y @ @ Aggregation 5: end while
13 @ 03 (O e ol o e ol _
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Algorithm 3 smoothed_aggregation(A; B = nothing)

1: if B == nothing then
. 2: B = ones(size(A4,1))
User Defined Near Null Space et
4: while size(A) < max_coarse do
5: Agqen, Bozn, level = extend hierarchy(A, B)
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Algorithm 3 smoothed_aggregation(A; B = nothing)

1: if B == nothing then
2: B = ones(size(A, 1))
= - ,
User Defined Near Null Space i |
4: while size(A) < max_coarse do
5: Agqen, Bozn, level = extend hierarchy(A, B)
6: A+ AQ2h, B + BQ2h
- A ti Improved near . :
‘%‘ I%‘ %%Erer%%olron - null space 7: end while
: = = !il_‘/ - _t
} : BY B2 ) ; =R Algorithm 1 extend_hierarchy(A, B)
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! © g”"' 3102 First orthonormal Second orthonormal He T, BQZh — fit_CandidateS(C B)
1 ® 1,1 11,2 basis q, basis q, )
1+ |[@ Biai Bi 6: P = smooth(A,T)
1 [® Bis, 132 T
1® SM] Bm: ngu gmgu R R Te dt= F
1 | ® 15,1 15.2 2,1 D22 | 2,122 [ |1 T2 i o
L l_ @© Eml Bmi 3,1 D32 3,1 3.2 [O RZ;I 8: AQ% - RAP
41 B aQiz] = 9: return Agqsn, Boen, Level(A, P, R)
_‘2 b, b, q 92 I I
R
= [ Gal [ - = ™ = T ti
-EL;BM | . —-® thQLz | l _-® .
By, B,y @ 21 Qa2 @ ot ne(sji(r?rclllrgﬁ %Egce
3,1 D32 @ 31 {0 @ - —
4,1 B2 @ 41 {2 @ R R
Bs, Bs, ® Q5,1 Qs> @ 1l RLQ
By, B ® 6.1 Qg2 ® 0 2.2
7.1 D72 @ QR 7172 @ Ryi Rsp
By Bg> e > T = g1 Us2 ® BQQ},_ =| 0 Ry
By, By, ® Qo1 Qo2 @ Rsi Rsy
Bio1 Bioa % 101 Y02 g 0 Re
BHJBHJ @ QHJQHJ @ R;; Ry,
21785 B @ P20, Qs @ 0 Reo
14,1 B1a2 | @ 141 Qa2 | @ - -
151 Bi1s2 | ® 150 Qis2 | ®
L 16,1 mi {® L 16,1 Ihi i)

RUHR
18 ATale of Two Multigrids | SA - AMG S NVERSITAT R U B
BOCHUM



Numerical Experiments

2D Linear Elasticity:

= NNS (B) represents the rigid body modes:
= Translation in the x — direction
= Translation in the y — direction
= Rotation about z — axis

O R O R
R O RO
=
[Ex

xz = RanB

—
o
=

=

i

=
=

using AlgebraicMultigrid
x_nns, residuals_nns = solve(A, b, SmoothedAggregationAMG( ), log=true, reltol=
x_wonns, residuals_wonns = solve(A, b, SmoothedAggregationAMG(), log=true, reltol=

RUHR
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Numerical Experiments

2D Linear Elasticity:
SA-AMG (2D Linear Elasticity) Convergence

—@— Without NNS
—>&— With NNS

Residual

" " L " 1 " " " " 1 " N " N 1 " " N " 1
0 25 50 75 100
Iteration

RUHR
20 A Tale of Two Multigrids | SA - AMG S NVERSITAT R U B
BOCHUM



Numerical Experiments

Cantilever Beam:

NNS (B) represents the rigid body modes:
= Translation in the x — direction

= Translation in the y — direction

= Rotation about z — axis

1 0 -y
0 1 x4
0O 0 1
B = : :
1 0 =y
0 1 x4
0 0 1

XX

using AlgebraicMultigrid
x_nns, residuals_nns = solve(A, b, SmoothedAggregationAMG( ), log=true, reltol=
x_wonns, residuals_wonns = solve(A, b, SmoothedAggregationAMG(), log=true, reltol=

21 A Tale of Two Multigrids | SA - AMG
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Numerical Experiments
Cantilever Beam

10

10°

Residual

—@— Without NNS
—>&— With NNS

" " L " 1 " " " " 1 " N " N 1 " " N " 1
0 25 50 75 100
Iteration
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Roadmap

= FerriteMultigrid.jl: P- Multigrid Extension
= Why and How?
= Coarsening Strategies
= Package Interface
= Numerical Experiments
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Why and How?

Why FerriteMultigrid.jl?

Residual

0 25 50 75 100
Iteration
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Why and How?

How FerriteMultigrid.jl?

= Ferrite.jl > FEM infrastructure

= AlgebraicMultigrid.jl = coarse solver _ L
FerriteMultigrid. jl

P=2
o >
o
P=1 ==
~—

25
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Coarsening Strategies

1. Galerkin Projection

— “TP=i P
Ahap_l - Ip AhapIp—I’

Ty 1(Vp-1) = (Mp)_ng—l Y15

p_

(M) := /Q‘I’z',p D pd, (Ph_1)ij := /Q‘I)i,p P p—1dd.

2. Rediscretization

fine grid

o 15_1: prolongation operator

=1 ~1: restriction operator
= M,: mass matrix on fine grid

o Pg_l: projection from coarse to

= @, shape functions at poly. p

@) AbstractPMuttigrid

o assemble(problem::AbstractPMultigrid, fe_space: FESpace): Matrix

/

T~

(©) DiffusionMultigrid

@ LinearElasticityMultigrid

o coeff: ConstantCoefficient

o C: SymmetricTensor

o assemble(problem::DiffusionMultigrid, fe_space: FESpace): Matrix

o assemble(problem::LinearElasticityMultigrid, fe_space: FESpace): Matrix

26
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Package Interface

@ . @&

using FerriteMultigrid
K, f, fe_space = poisson(

config = pmultigrid_config()

solve(K, f, fe_space, config; log = true, rtol

e , e © PMultigridConfiguration oo
©Ga|erkin © Rediscretization - P— — @DirectProjection ©StepF’rOJect|on
- - O coarse_strategy: AbstractCoarseningStrategy )
0 problem: AbstractPMultigrid o proj_strategy: AbstractProjectionStrategy Eliste g
coarse_strategy proj_strategy

® AbstractCoarseningStrategy @ AbstractProjectionStrategy
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Results

SA-AMG vs P-Multigrid (2D Linear Elasticity — Quadratic element approximation)

—@— pmg

3 —>— amg

10 3

100

Residual

10" F

10 ° F

10 3

0 25 50 75 100
Iteration
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Results

Galerkin vs Rediscretization (2D Linear Elasticity)

10° F

10° }

10 F

Residual

10 3

10°

10 3

—@— Rediscretization
——>—— Galerkin

9
Iteration

12

15
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Future Work and Possible Extensions

= |sogeometric analysis

= Theoretical foundation:
https://www.sciencedirect.com/science/article/pii/S00457825203053267?via%3Dihub

= Learning-based AMG coarsening

= Theoretical foundation: https://openreview.net/pdf?id=xXY|xli-2i

= GitHub issue: https://qgithub.com/JuliaLinearAlgebra/AlgebraicMultigrid.jl/issues/84
= Support for classical AMG with NNS
= Theoretical foundation: https://onlinelibrary.wiley.com/doi/10.1002/nla.688

= GitHub issue: https://github.com/JuliaLinearAlgebra/AlgebraicMultigrid.jl/issues/80
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END OF PRESENTATION
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