

RUHR-UNIVERSITÄT BOCHUM

A TALE OF TWO MULTIGRIDS

A- and P- Multigrid Methods in Vector-Valued PDEs

Abdelrahman Fathy Abdelrahman

CompEng Master Student

Problem Setup

$$Ax = b, \quad \text{find } x = ?$$

$$A$$

- **Sparse:**
Direct solvers (e.g., LU) X

- **PDE:** (e.g., $\text{Div}(\sigma) + b = 0$)
Conventional iterative methods will slow down as these systems grow larger

Problem Setup

So, we need another sparse iterative solvers such that:

- Designed for PDEs (more or less)
- Independent of mesh size (at least in theory)

Luckily, we have:

- Multigrid methods
 - Designed initially for elliptic PDEs
 - Extended to handle other PDEs

But the grass isn't always greener on the other side !

The Twist: AMG.jl isn't Perfect

Current Problems in AlgebraicMultigrid.jl

- supports only for scalar-valued PDEs (e.g., Poisson's equation $-\Delta u(x) = f(x)$)
- suffocates when dealing with systems come from higher order basis functions

Proposed Solutions

- Extend AMG.jl to handle vector-valued PDEs
 - Add interface to accept user-defined near null space (nns)
- Develop FerriteMultigrid.jl: an implementation of polynomial multigrid methods
 - Based on:
 - Ferrite.jl
 - AlgebraicMultigrid.jl

Roadmap

- **Multigrid Methods 101**
 - Basic Iterative Methods as Smoothers
 - Error Behaviors Across Grids
 - The Two-Level Method
- **Smoothed aggregation (SA) in Algebraic Multigrid (AMG)**
 - Fixed Near Null Space (NNS)
 - User Defined Near Null Space (NNS)
 - Numerical Experiments
- **FerriteMultigrid.jl: P- Multigrid Extension**
 - Why and How?
 - Coarsening Strategies
 - Package Interface
 - Numerical Experiments
- **Future Work and Possible Extensions**

Roadmap

- **Multigrid Methods 101**
 - Basic Iterative Methods as Smoothers
 - Error Behaviors Across Grids
 - The Two-Level Method
- Smoothed aggregation (SA) in Algebraic Multigrid (AMG)
 - Fixed Near Null Space (NNS)
 - User Defined Near Null Space (NNS)
 - Numerical Experiments
- **FerriteMultigrid.jl: P- Multigrid Extension**
 - Why and How?
 - Coarsening Strategies
 - Package Interface
 - Numerical Experiments
- **Future Work and Possible Extensions**

Basic Iterative Methods as Smoothers

$$Ax = b$$

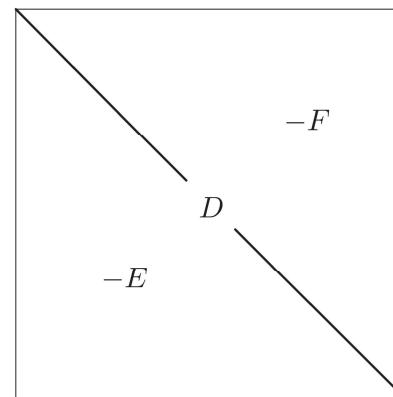
$$A := M - N$$

Update eq.: $x^{(k+1)} = M^{-1}N x^{(k)} + M^{-1}b$

Error eq.: $e^{(k+1)} = Ge^{(k)}, \quad \text{where } G = I - M^{-1}A$

NOTE:

- Easy to compute M^{-1}
- E.g.,
 - Jacobi: $M = D$
 - **Forward Gauss-Seidel:** $M = D - E$
 - **Backward Gauss-Seidel:** $M = D - F$



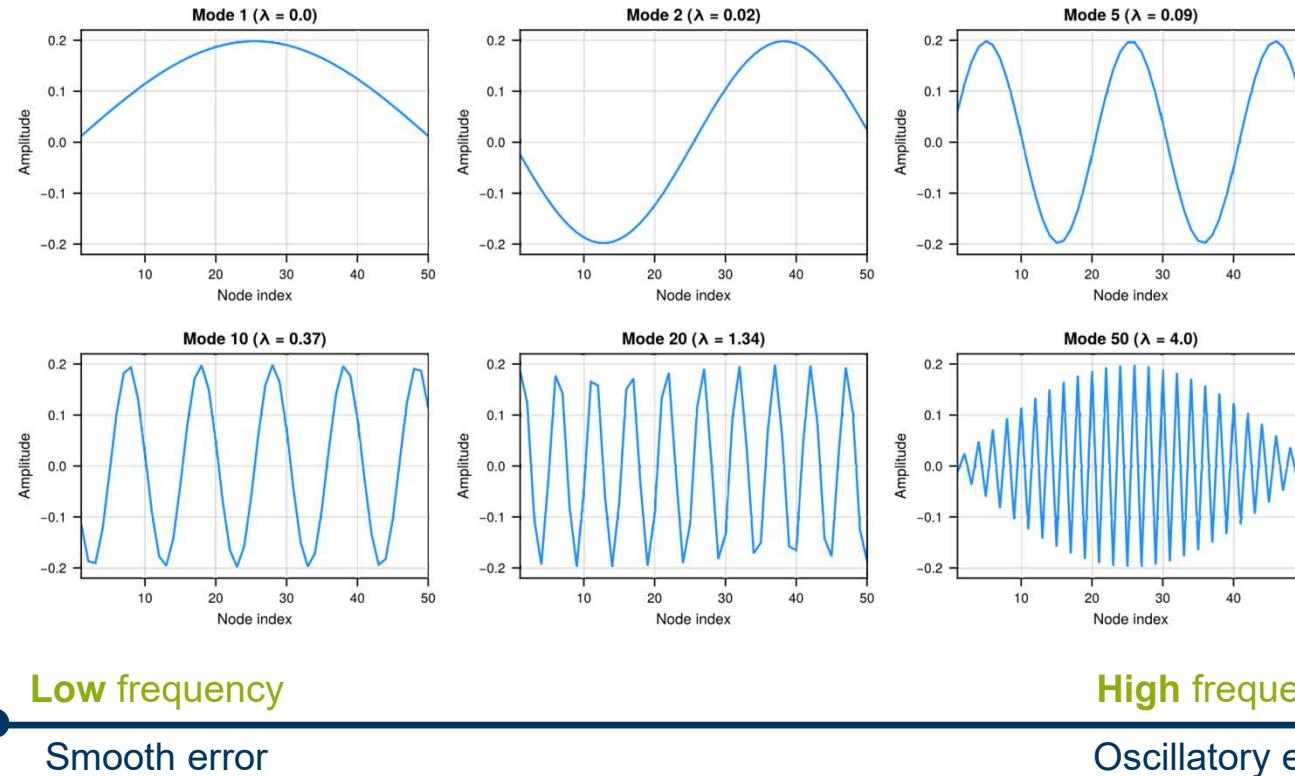
Basic Iterative Methods as Smothers

Error propagation:

- Consider 1D Poisson problem ($-u''(x) = f(x)$) with 50 interior points.
- Selected eigenmodes:

REMEMBER:

$$x^{(k+1)} = M^{-1}N x^{(k)} + M^{-1}b$$
$$e^{(k+1)} = (I - M^{-1}A)e^{(k)}$$



Basic Iterative Methods as Smoothers

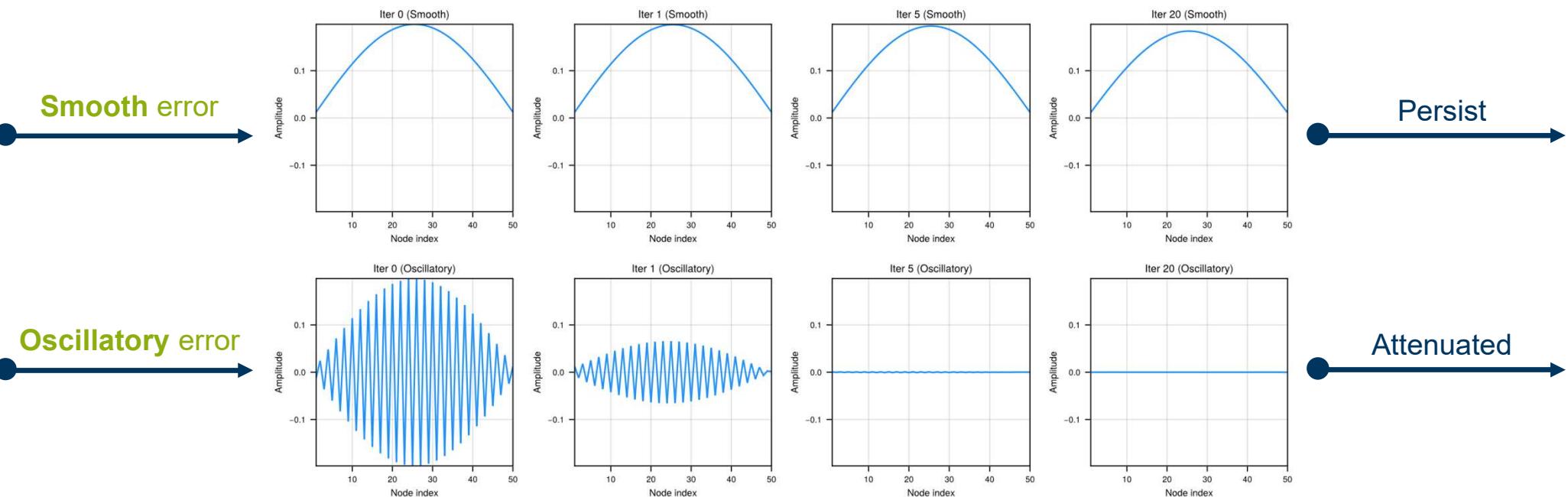
Error propagation:

- Apply Gauss-Seidel error equation multiple times:

REMEMBER:

$$x^{(k+1)} = M^{-1}N x^{(k)} + M^{-1}b$$

$$e^{(k+1)} = (I - M^{-1}A)e^{(k)}$$

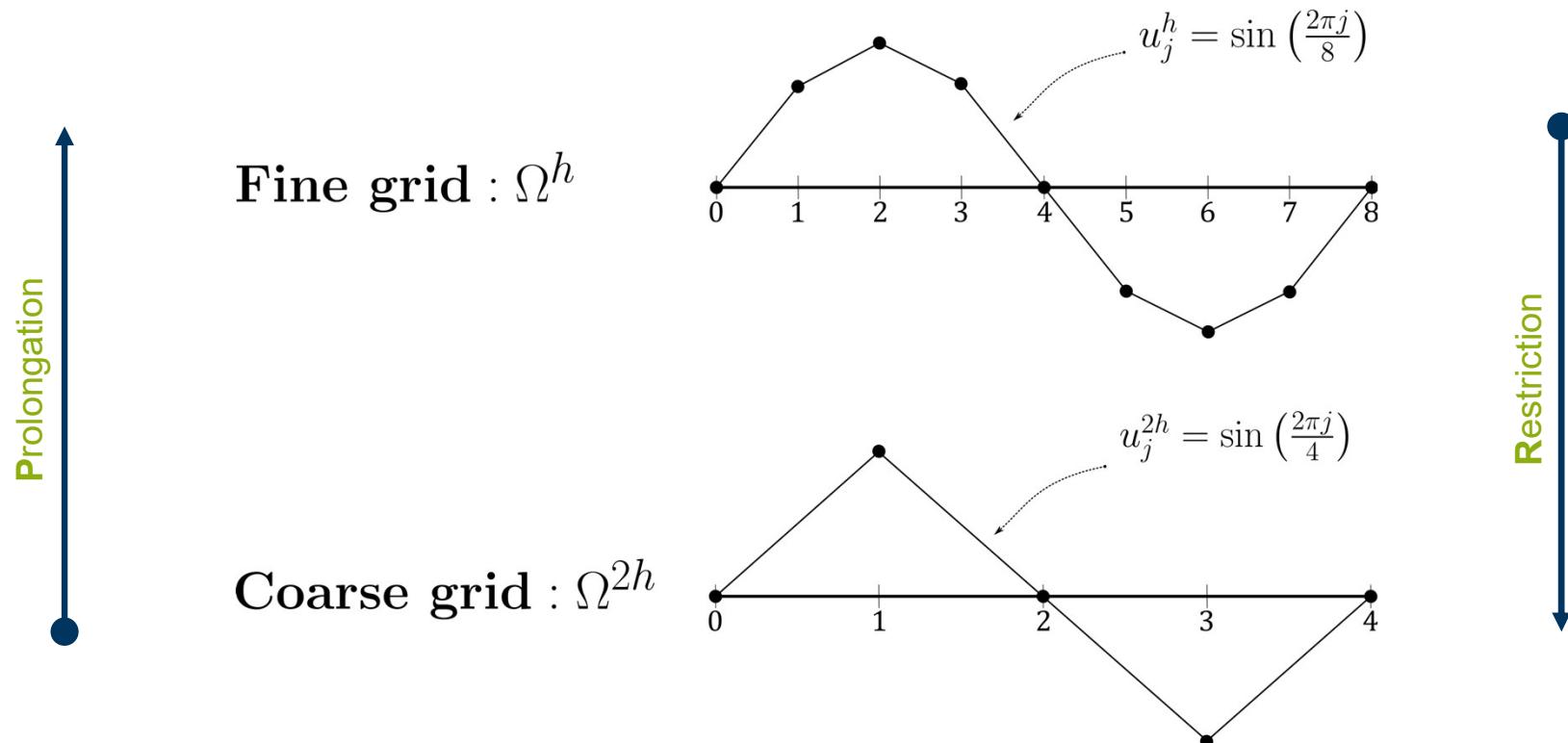


Error Behavior Across Grids

- Compare between the same mode on different grids:
 - E.g., **Second** mode on a **fine grid** (Ω^h , $n = 8$) and a **coarse** grid (Ω^{2h} , $n = 4$)
 - Frequency increases as we go from fine to coarse grid.

REMEMBER:

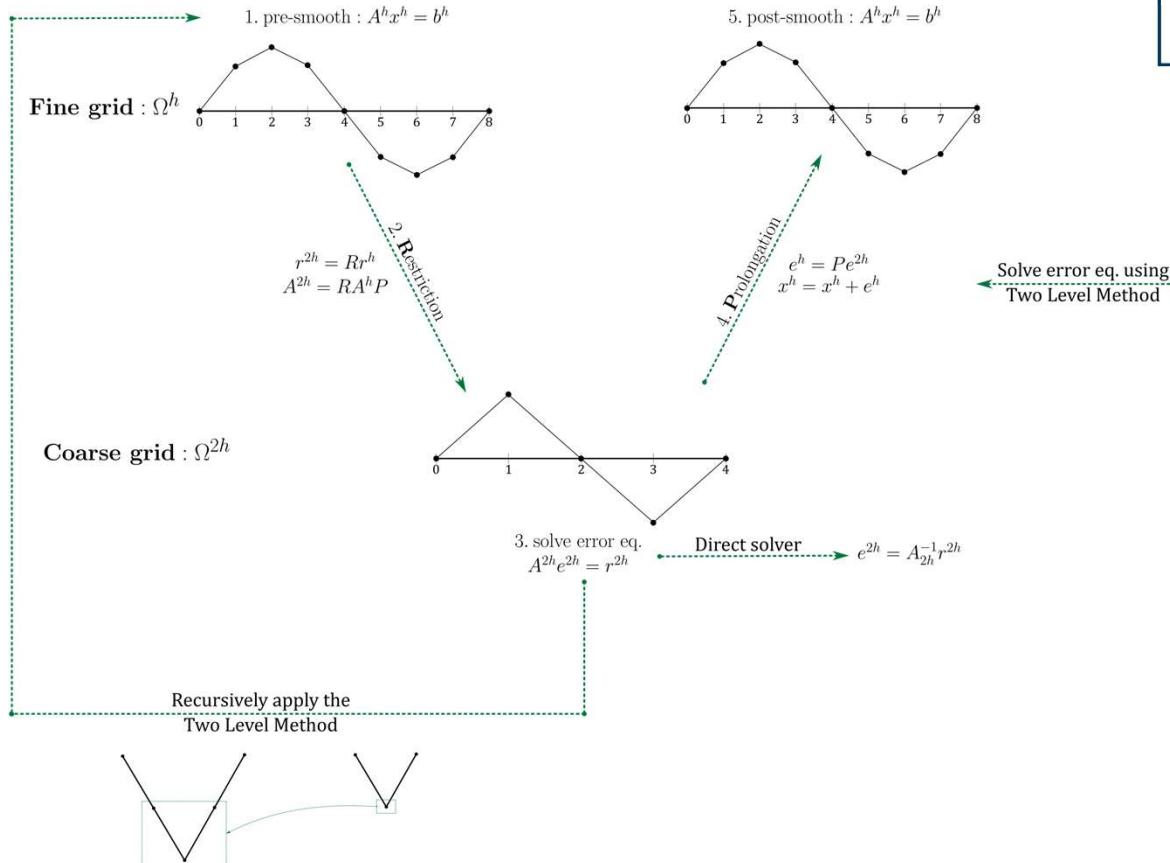
- By smoothing
 - Low freq. \rightarrow persist
 - High freq. \rightarrow attenuated



The Two-Level Method

Ensure Robustness:

- Define near null space B to be equivalent to the smooth error.
- P & R operators must span B



REMEMBER:

- By smoothing
 - Low freq. \rightarrow persist
 - High freq. \rightarrow attenuated
- By coarsening
 - Ω^h (smooth) \leftrightarrow Ω^{2h} (oscillatory)

Roadmap

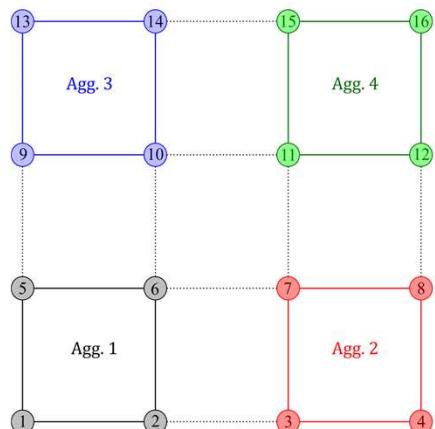
- Multigrid Methods 101
 - Basic Iterative Methods as Smoothers
 - Error Behaviors Across Grids
 - The Two-Level Method
- Smoothed aggregation (SA) in Algebraic Multigrid (AMG)
 - Fixed Near Null Space (NNS)
 - User Defined Near Null Space (NNS)
 - Numerical Experiments
- FerriteMultigrid.jl: P- Multigrid Extension
 - Why and How?
 - Coarsening Strategies
 - Package Interface
 - Numerical Experiments
- Future Work and Possible Extensions

SA - AMG

NOTE

- Two primary ways to construct prolongation and restriction operators:
 - Smoothed Aggregation (our focus
 - C/F splitting methods (e.g., Ruge-Stuben)

Fixed Near Null Space (NNS)



Inject B into C

$$C = \begin{bmatrix} \text{Agg. 1} & \text{Agg. 2} & \text{Agg. 3} & \text{Agg. 4} \\ B_1 & B_2 & B_3 & B_4 \\ B_5 & B_6 & B_7 & B_8 \\ B_9 & B_{10} & B_{11} & B_{12} \\ B_{13} & B_{14} & B_{15} & B_{16} \end{bmatrix}$$

$$C = \begin{bmatrix} \text{Agg. 1} & \text{Agg. 2} & \text{Agg. 3} & \text{Agg. 4} \\ 1 & * & * & * \\ 1 & * & * & * \\ * & 1 & * & * \\ 1 & * & * & * \\ 1 & * & * & * \\ * & 1 & * & * \\ * & 1 & * & * \\ * & * & 1 & * \\ * & * & 1 & * \\ * & * & 1 & * \\ * & * & 1 & * \\ * & * & 1 & * \\ * & * & 1 & * \\ * & * & 1 & * \\ * & * & 1 & * \end{bmatrix} \xrightarrow{\text{Aggregation operator}} B_{\Omega^h} = \begin{bmatrix} B_1 \\ B_2 \\ B_3 \\ B_4 \\ B_5 \\ B_6 \\ B_7 \\ B_8 \\ B_9 \\ B_{10} \\ B_{11} \\ B_{12} \\ B_{13} \\ B_{14} \\ B_{15} \\ B_{16} \end{bmatrix}$$

Algorithm 2 smoothed_aggregation(A)

```

1:  $B = \text{ones}(\text{size}(A, 1))$ 
2: while  $\text{size}(A) < \text{max\_coarse}$  do
3:    $A_{\Omega^{2h}}, B_{\Omega^{2h}}, \text{level} = \text{extend\_hierarchy}(A, B)$ 
4:    $A \leftarrow A_{\Omega^{2h}}, B \leftarrow B_{\Omega^{2h}}$ 
5: end while

```

$$T = \begin{bmatrix} \text{Agg. 1} & \text{Agg. 2} & \text{Agg. 3} & \text{Agg. 4} \\ Q_1 & Q_2 & Q_3 & Q_4 \\ Q_5 & Q_6 & Q_7 & Q_8 \\ Q_9 & Q_{10} & Q_{11} & Q_{12} \\ Q_{13} & Q_{14} & Q_{15} & Q_{16} \end{bmatrix} \xrightarrow{\text{QR}} B_{\Omega^{2h}} = \begin{bmatrix} R_1 \\ R_2 \\ R_3 \\ R_4 \end{bmatrix}$$

QR in $\mathbb{R}^{m \times 1}$

$$\begin{bmatrix} [B_1, B_2, B_5, B_6]^T \\ [Q_1, Q_2, Q_5, Q_6]^T \end{bmatrix} \xrightarrow{\text{Orthonormal vector}} R_l$$

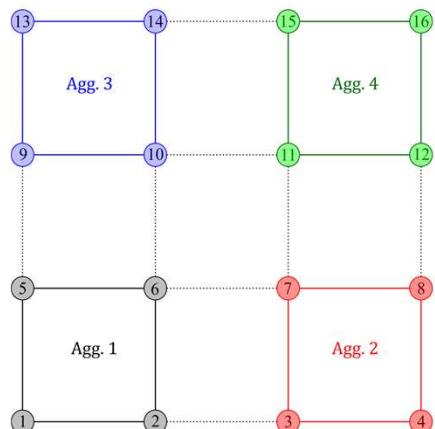
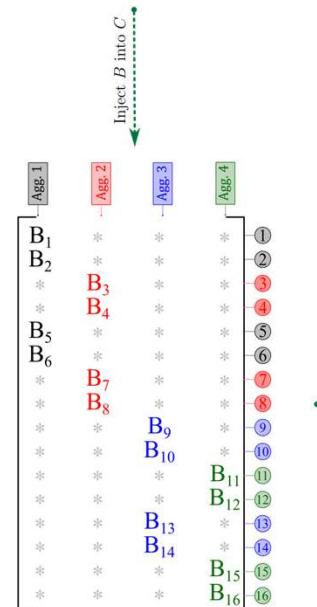
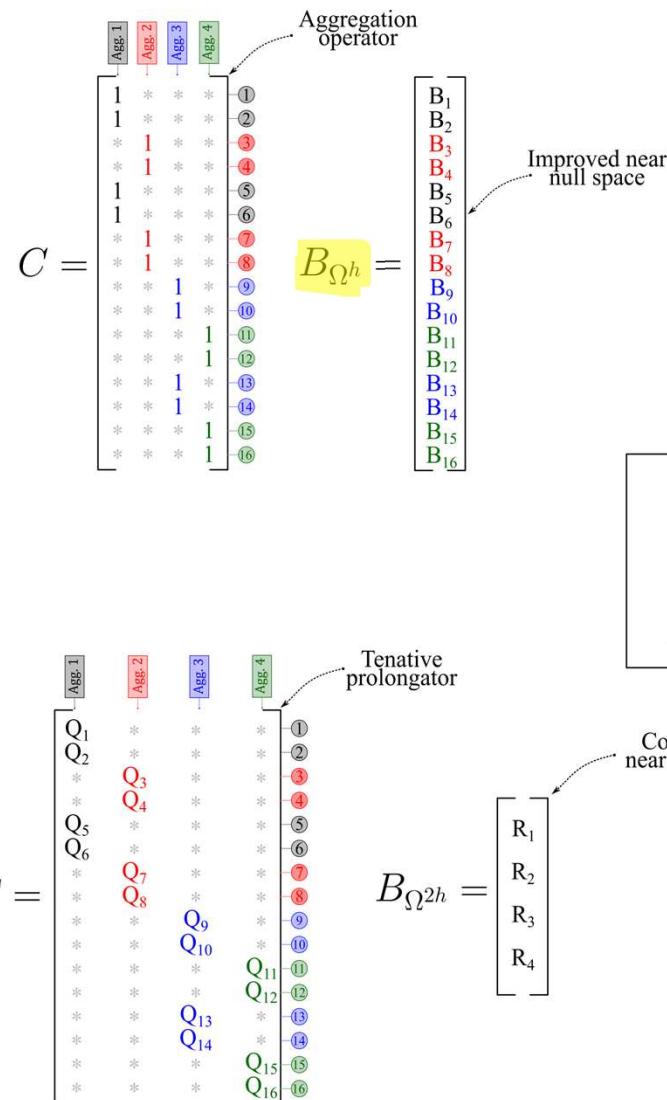
Algorithm 1 extend_hierarchy(A, B)

```

1:  $S = \text{strength}(A)$ 
2:  $C = \text{aggregate}(S)$ 
3:  $b = \text{zeros}(\text{size}(A, 1), \text{size}(B, 2))$ 
4:  $B \leftarrow \text{improve\_candidates}(A, B, b)$ 
5:  $T, B_{\Omega^{2h}} = \text{fit\_candidates}(C, B)$ 
6:  $P = \text{smooth}(A, T)$ 
7:  $R = P^T$ 
8:  $A_{\Omega^{2h}} = RAP$ 
9: return  $A_{\Omega^{2h}}, B_{\Omega^{2h}}, \text{Level}(A, P, R)$ 

```

Fixed Near Null Space (NNS)

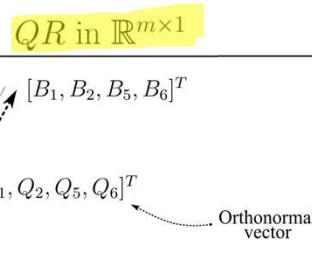


Algorithm 2 smoothed_aggregation(A)

```

1:  $B = \text{ones}(\text{size}(A, 1))$ 
2: while  $\text{size}(A) < \text{max\_coarse}$  do
3:    $A_{\Omega^{2h}}, B_{\Omega^{2h}}, \text{level} = \text{extend\_hierarchy}(A, B)$ 
4:    $A \leftarrow A_{\Omega^{2h}}, B \leftarrow B_{\Omega^{2h}}$ 
5: end while

```



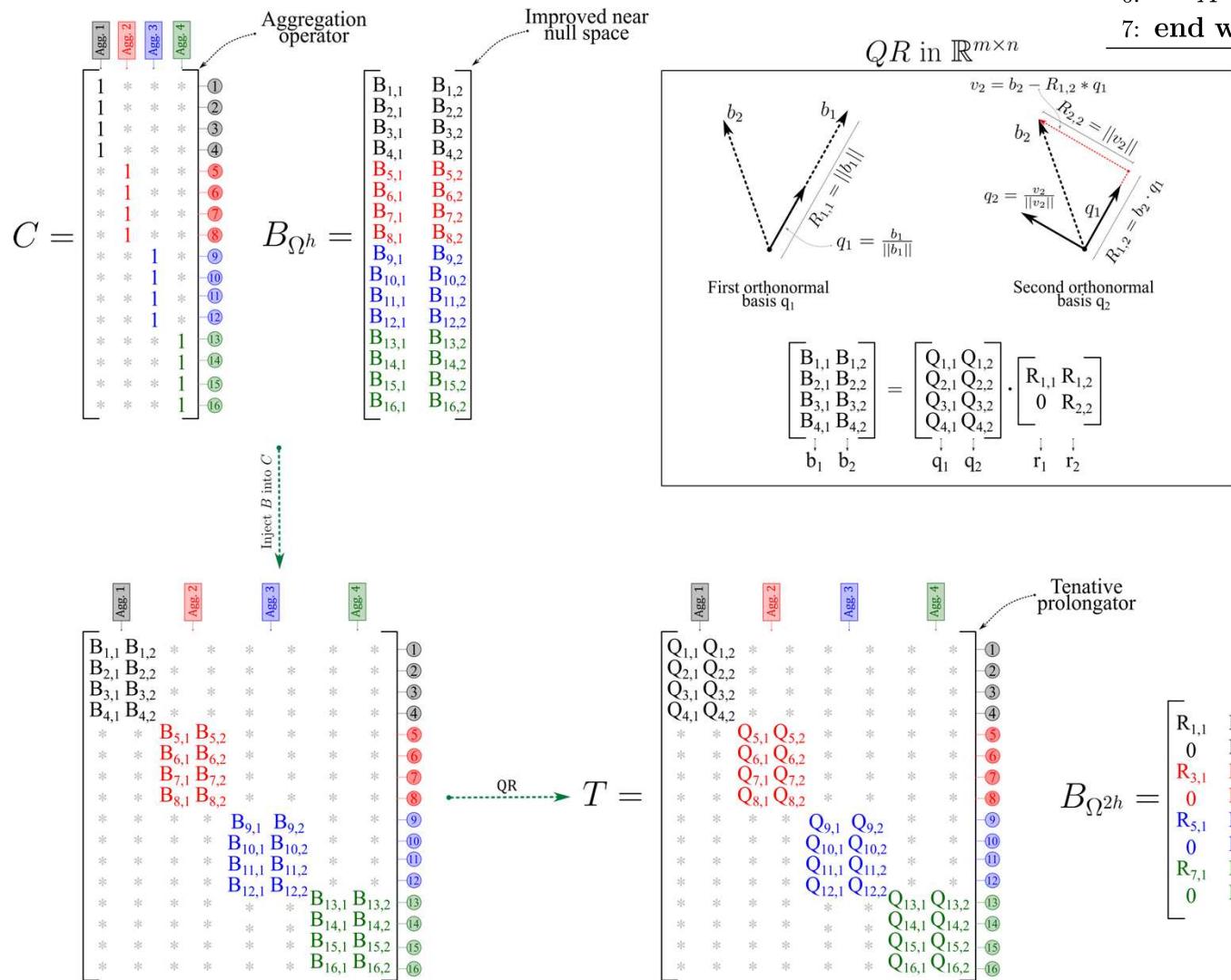
Algorithm 1 extend_hierarchy(A, B)

```

1:  $S = \text{strength}(A)$ 
2:  $C = \text{aggregate}(S)$ 
3:  $b = \text{zeros}(\text{size}(A, 1), \text{size}(B, 2))$ 
4:  $B \leftarrow \text{improve\_candidates}(A, B, b)$ 
5:  $T, B_{\Omega^{2h}} = \text{fit\_candidates}(C, B)$ 
6:  $P = \text{smooth}(A, T)$ 
7:  $R = P^T$ 
8:  $A_{\Omega^{2h}} = RAP$ 
9: return  $A_{\Omega^{2h}}, B_{\Omega^{2h}}, \text{Level}(A, P, R)$ 

```

User Defined Near Null Space



Algorithm 3 smoothed_aggregation(A ; $B = \text{nothing}$)

```

1: if  $B == \text{nothing}$  then
2:    $B = \text{ones}(\text{size}(A, 1))$ 
3: end if
4: while  $\text{size}(A) < \text{max\_coarse}$  do
5:    $A_{\Omega^{2h}}, B_{\Omega^{2h}}, \text{level} = \text{extend\_hierarchy}(A, B)$ 
6:    $A \leftarrow A_{\Omega^{2h}}, B \leftarrow B_{\Omega^{2h}}$ 
7: end while

```

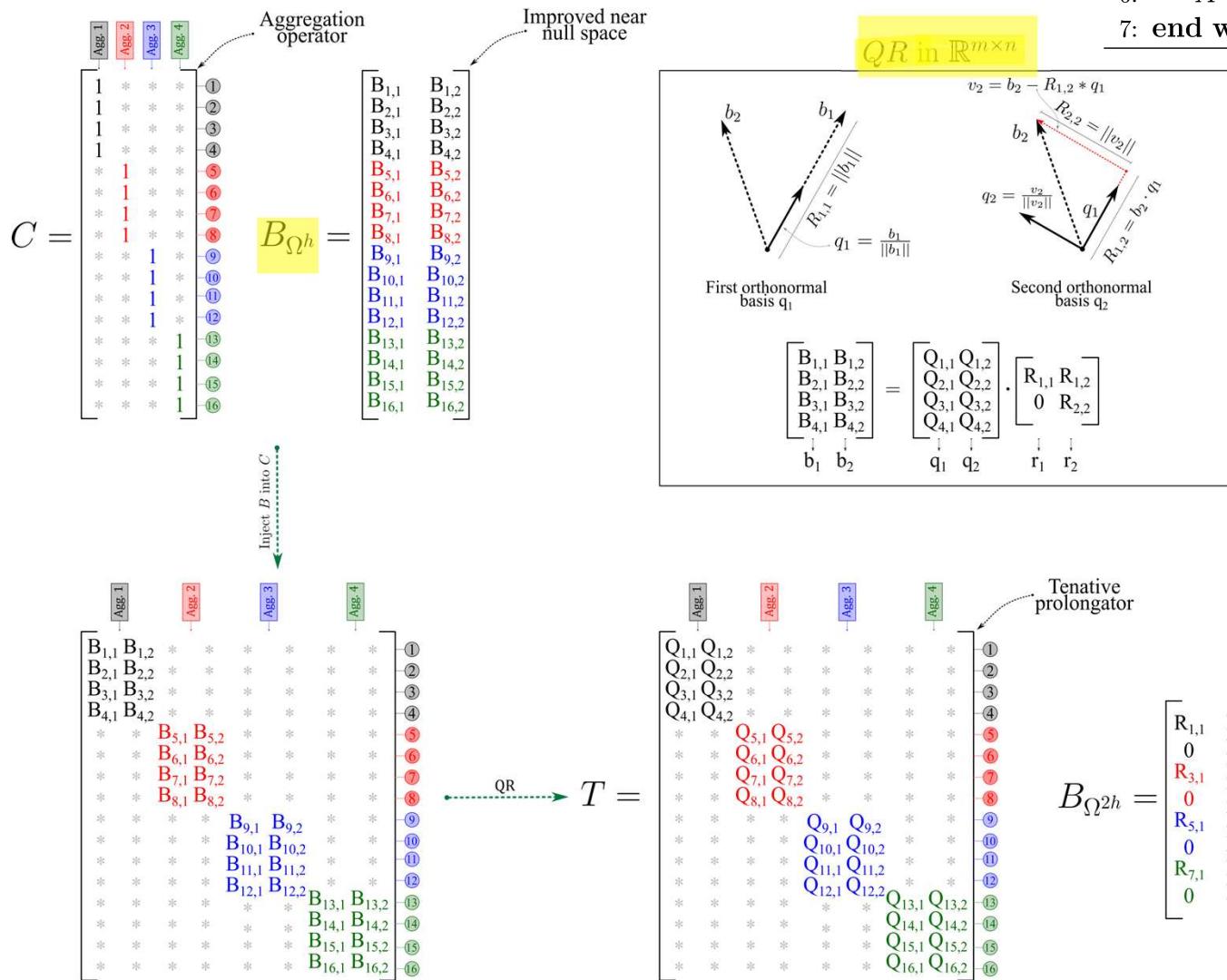
Algorithm 1 extend_hierarchy(A, B)

```

1:  $S = \text{strength}(A)$ 
2:  $C = \text{aggregate}(S)$ 
3:  $b = \text{zeros}(\text{size}(A, 1), \text{size}(B, 2))$ 
4:  $B \leftarrow \text{improve\_candidates}(A, B, b)$ 
5:  $T, B_{\Omega^{2h}} = \text{fit\_candidates}(C, B)$ 
6:  $P = \text{smooth}(A, T)$ 
7:  $R = P^T$ 
8:  $A_{\Omega^{2h}} = RAP$ 
9: return  $A_{\Omega^{2h}}, B_{\Omega^{2h}}, \text{Level}(A, P, R)$ 

```

User Defined Near Null Space



Algorithm 3 smoothed_aggregation(A ; $B = \text{nothing}$)

```

1: if  $B == \text{nothing}$  then
2:    $B = \text{ones}(\text{size}(A, 1))$ 
3: end if
4: while  $\text{size}(A) < \text{max\_coarse}$  do
5:    $A_{\Omega^{2h}}, B_{\Omega^{2h}}, \text{level} = \text{extend\_hierarchy}(A, B)$ 
6:    $A \leftarrow A_{\Omega^{2h}}, B \leftarrow B_{\Omega^{2h}}$ 
7: end while

```

Algorithm 1 extend_hierarchy(A , B)

```

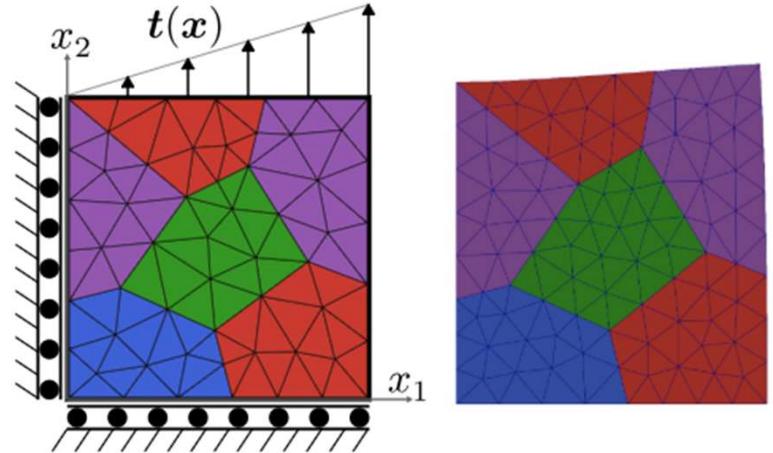
1:  $S = \text{strength}(A)$ 
2:  $C = \text{aggregate}(S)$ 
3:  $b = \text{zeros}(\text{size}(A, 1), \text{size}(B, 2))$ 
4:  $B \leftarrow \text{improve\_candidates}(A, B, b)$ 
5:  $T, B_{\Omega^{2h}} = \text{fit\_candidates}(C, B)$ 
6:  $P = \text{smooth}(A, T)$ 
7:  $R = P^T$ 
8:  $A_{\Omega^{2h}} = RAP$ 
9: return  $A_{\Omega^{2h}}, B_{\Omega^{2h}}, \text{Level}(A, P, R)$ 

```

Numerical Experiments

2D Linear Elasticity:

- NNS (B) represents the rigid body modes:
 - Translation in the x – direction
 - Translation in the y – direction
 - Rotation about z – axis

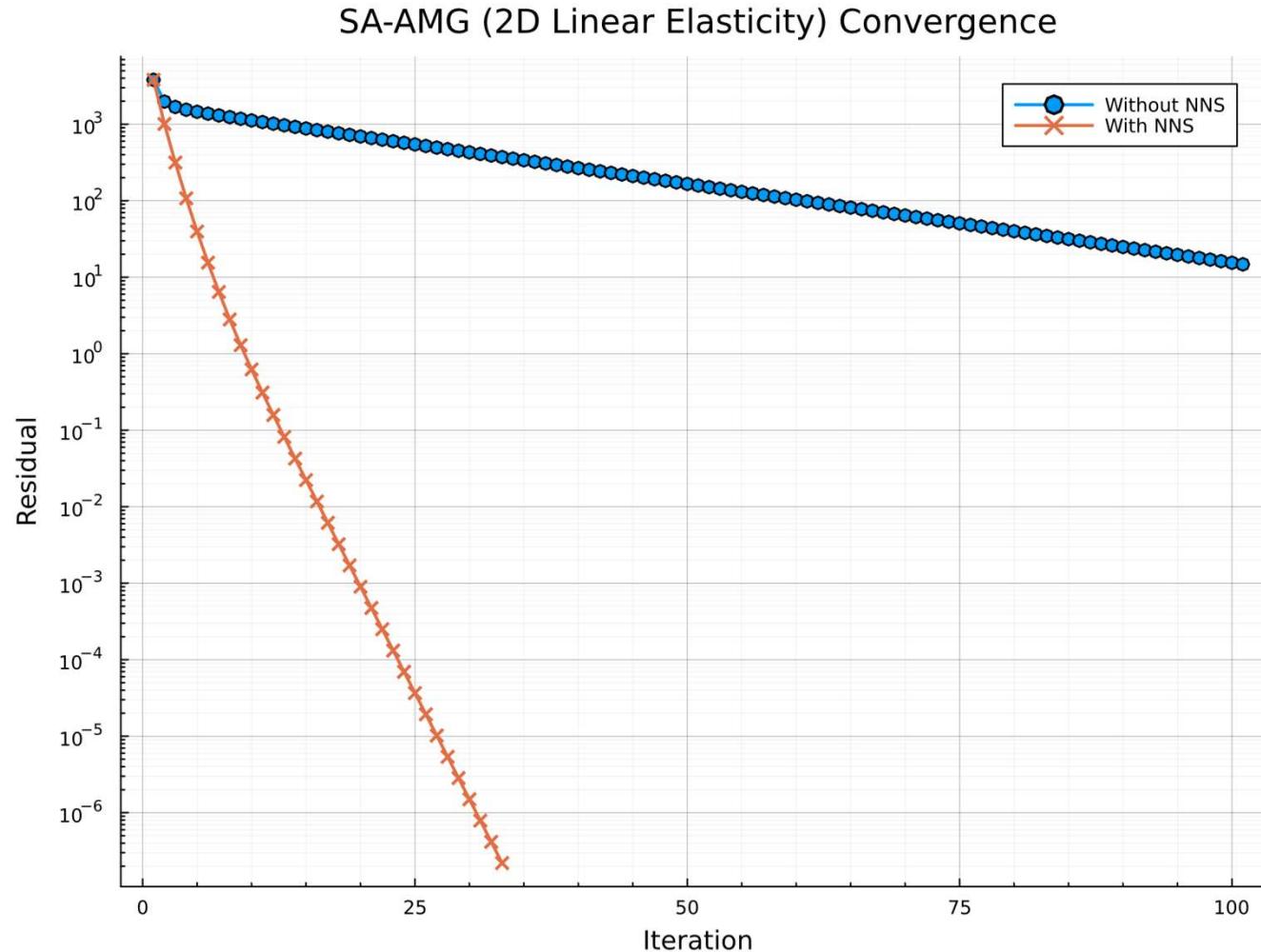


$$B = \begin{bmatrix} 1 & 0 & -y_1 \\ 0 & 1 & x_1 \\ 1 & 0 & -y_2 \\ 0 & 1 & x_2 \\ \vdots & \vdots & \vdots \\ 1 & 0 & -y_n \\ 0 & 1 & x_n \end{bmatrix} \in \mathbb{R}^{2n \times 3}$$


```
using AlgebraicMultigrid
x_nns, residuals_nns = solve(A, b, SmoothedAggregationAMG(), log=true, reltol=1e-10;B=B)
x_wonns, residuals_wonns = solve(A, b, SmoothedAggregationAMG(), log=true, reltol=1e-10)
```

Numerical Experiments

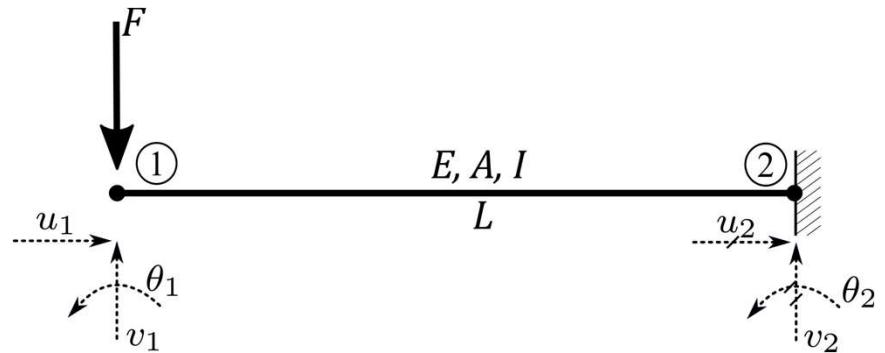
2D Linear Elasticity:



Numerical Experiments

Cantilever Beam:

- NNS (B) represents the rigid body modes:
 - Translation in the x – direction
 - Translation in the y – direction
 - Rotation about z – axis

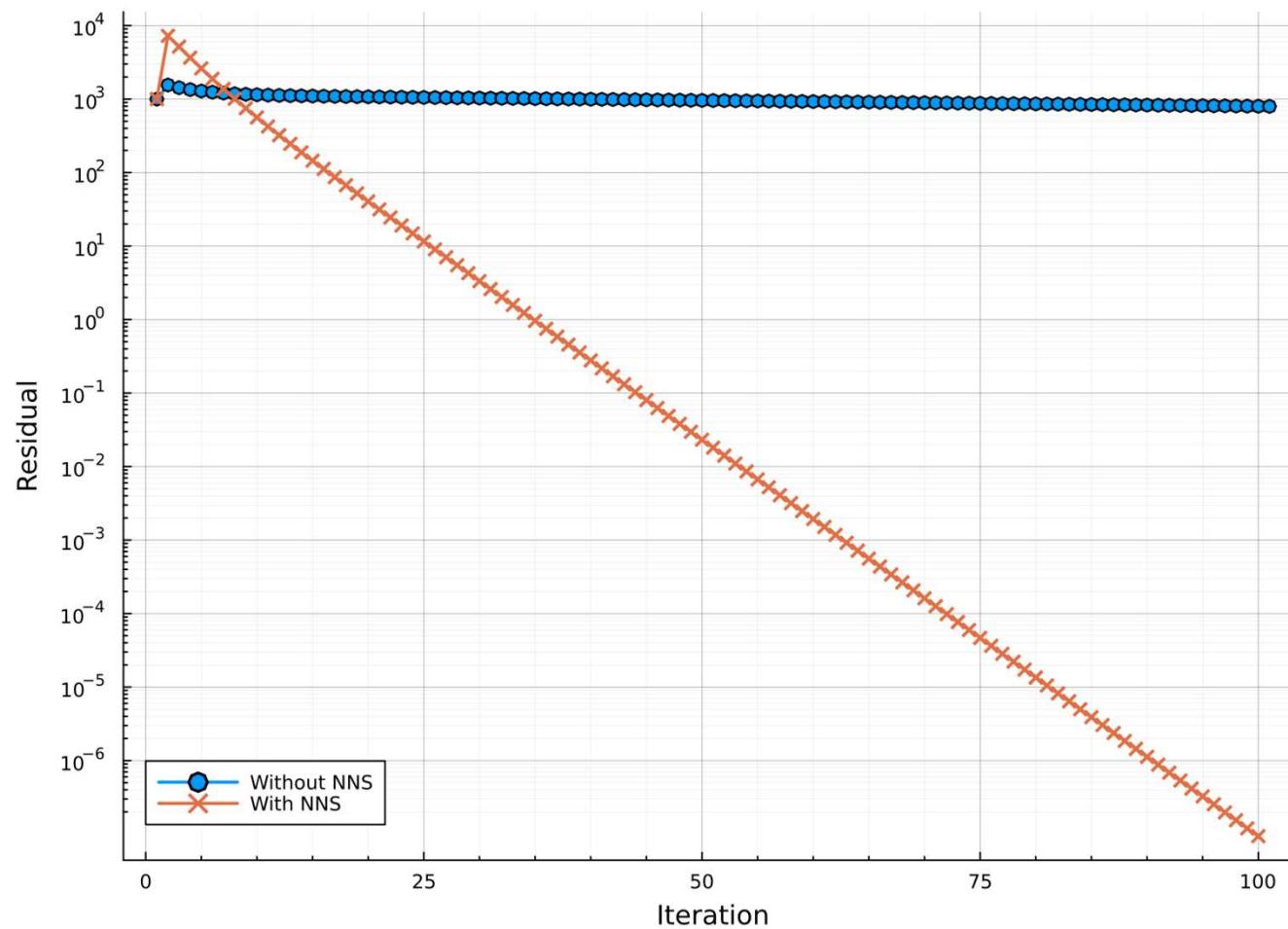


$$B = \begin{bmatrix} 1 & 0 & -y_1 \\ 0 & 1 & x_1 \\ 0 & 0 & 1 \\ \vdots & \vdots & \vdots \\ 1 & 0 & -y_n \\ 0 & 1 & x_n \\ 0 & 0 & 1 \end{bmatrix} \in \mathbb{R}^{3n \times 3}$$


```
using AlgebraicMultigrid
x_nns, residuals_nns = solve(A, b, SmoothedAggregationAMG(), log=true, reltol=1e-10; B=B)
x_wonns, residuals_wonns = solve(A, b, SmoothedAggregationAMG(), log=true, reltol=1e-10)
```

Numerical Experiments

Cantilever Beam

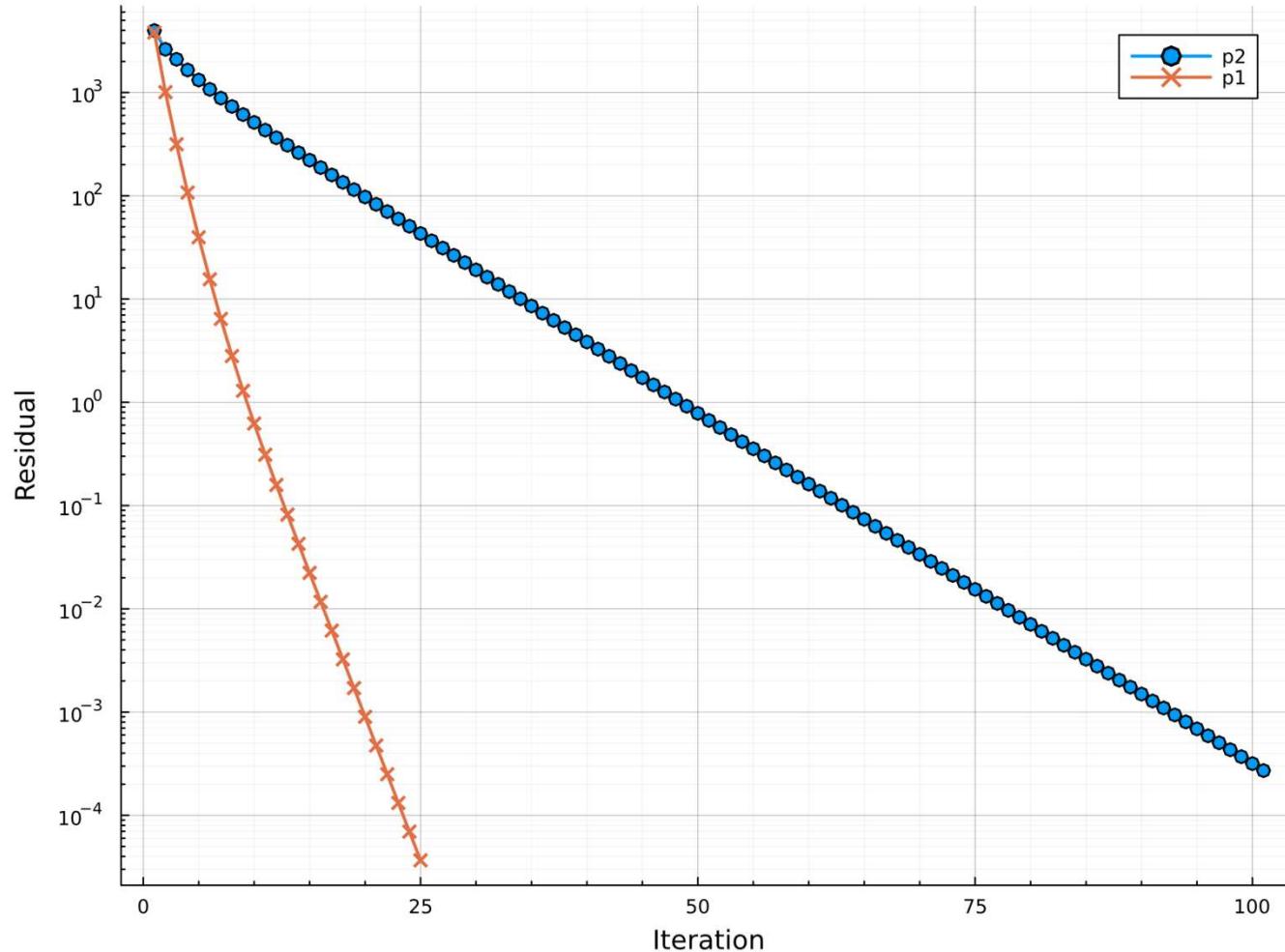


Roadmap

- Multigrid Methods 101
 - Basic Iterative Methods as Smoothers
 - Error Behaviors Across Grids
 - The Two-Level Method
- Smoothed aggregation (SA) in Algebraic Multigrid (AMG)
 - Fixed Near Null Space (NNS)
 - User Defined Near Null Space (NNS)
 - Numerical Experiments
- **FerriteMultigrid.jl: P- Multigrid Extension**
 - Why and How?
 - Coarsening Strategies
 - Package Interface
 - Numerical Experiments
- Future Work and Possible Extensions

Why and How?

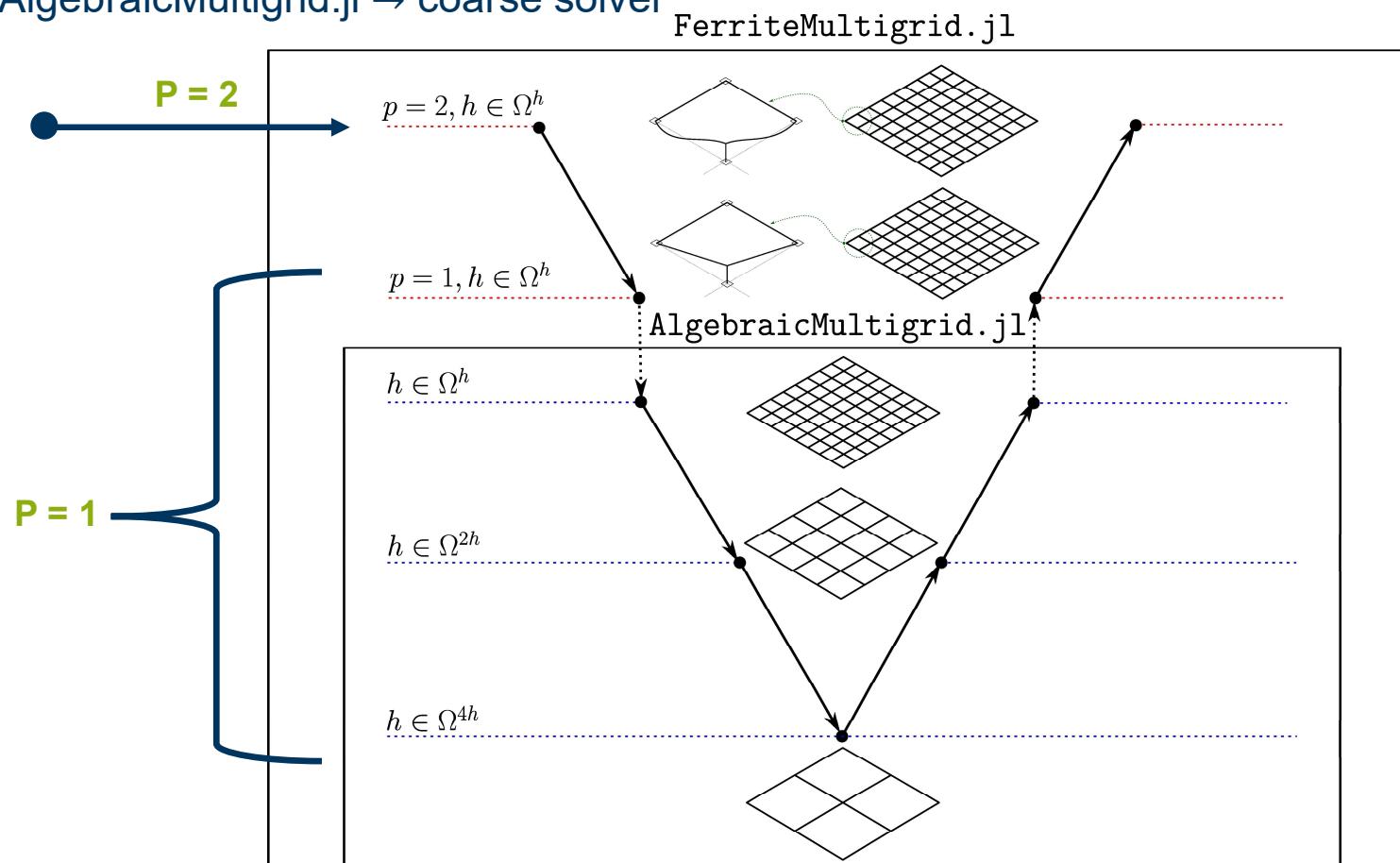
Why FerriteMultigrid.jl?



Why and How?

How FerriteMultigrid.jl?

- Ferrite.jl → FEM infrastructure
- AlgebraicMultigrid.jl → coarse solver



Coarsening Strategies

1. Galerkin Projection

$$A_{h,p-1} = \mathcal{I}_p^{p-1} A_{h,p} \mathcal{I}_{p-1}^p,$$

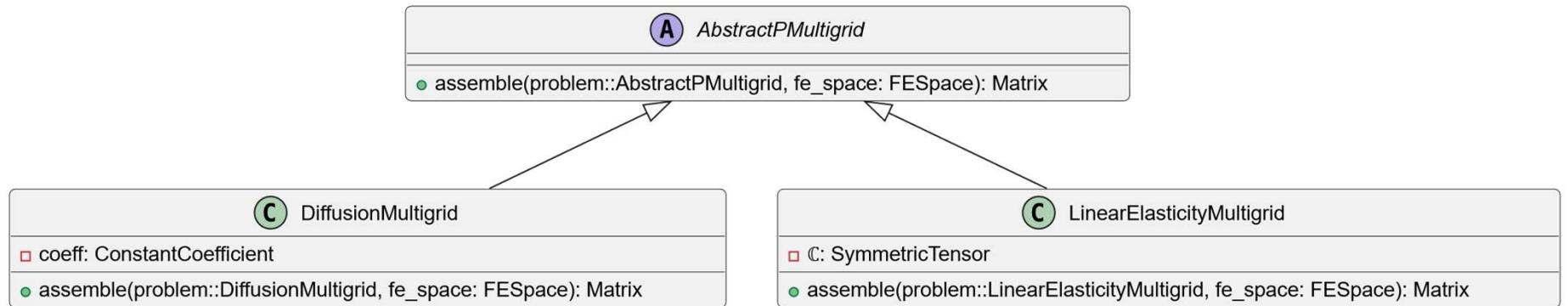
$$\mathcal{I}_{p-1}^p(\mathbf{v}_{p-1}) = (\mathbf{M}_p)^{-1} \mathbf{P}_{p-1}^p \mathbf{v}_{p-1},$$

$$(\mathbf{M}_p)_{ij} := \int_{\Omega} \Phi_{i,p} \Phi_{j,p} \, d\Omega, \quad (\mathbf{P}_{p-1}^p)_{ij} := \int_{\Omega} \Phi_{i,p} \Phi_{j,p-1} \, d\Omega.$$

NOTE:

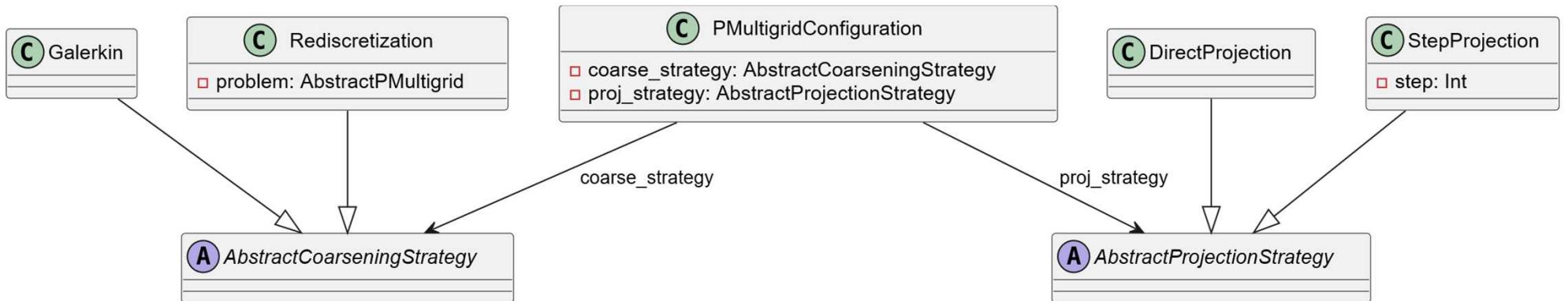
- I_{p-1}^p : prolongation operator
- I_p^{p-1} : restriction operator
- \mathbf{M}_p : mass matrix on fine grid
- \mathbf{P}_{p-1}^p : projection from coarse to fine grid
- Φ_p : shape functions at poly. p

2. Rediscretization



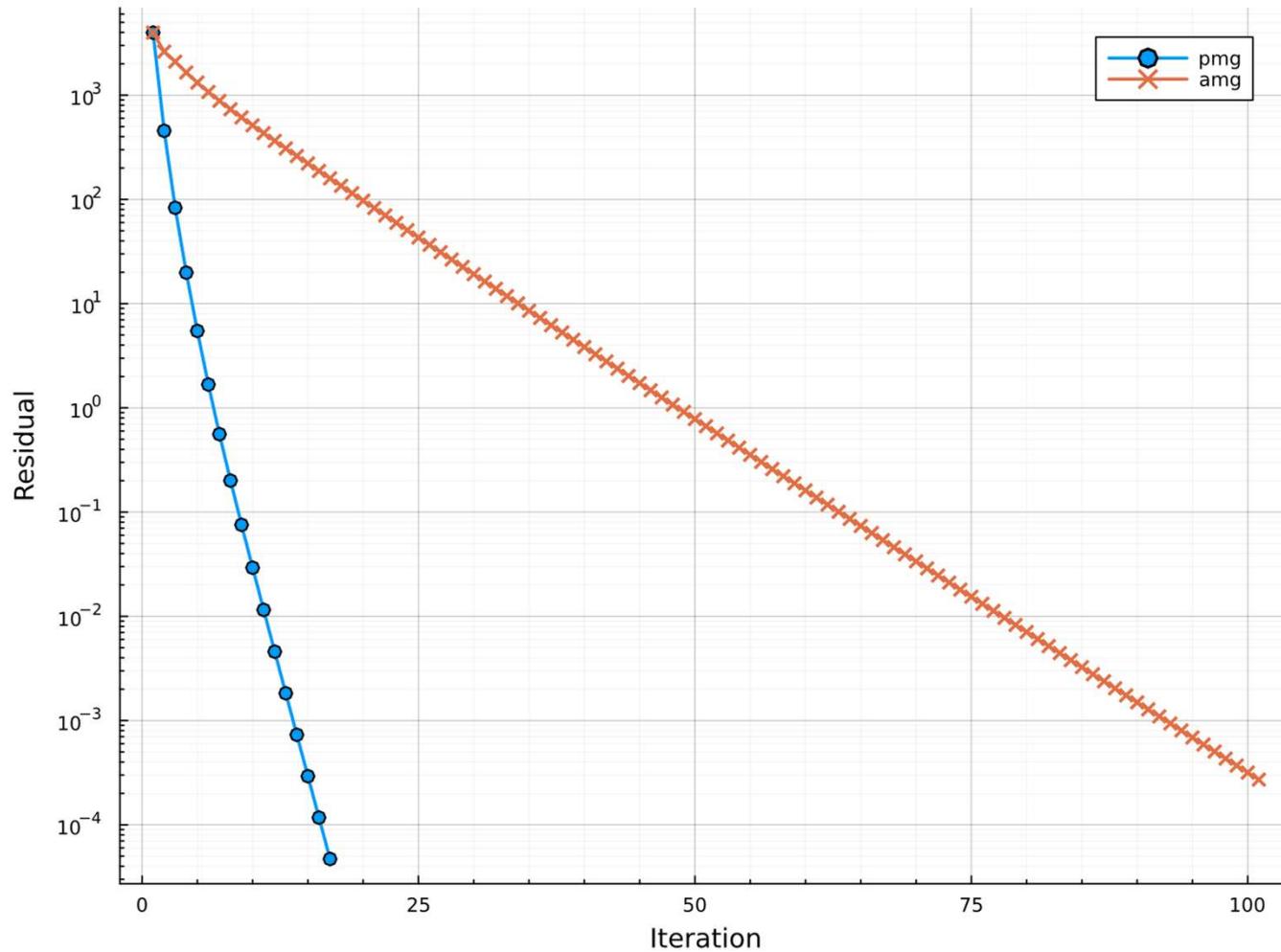
Package Interface

```
●●●  
using FerriteMultigrid  
  
# Define a 1D diffusion problem with p = 2 and 3 quadrature points.  
K, f, fe_space = poisson(1000, 2, 3)  
  
# Define a p-multigrid configuration  
config = pmultigrid_config() # default config (galerkin as coarsening strategy and direct projection  
(i.e., from p to 1 directly))  
  
# Solve using the p-multigrid solver  
x, res = solve(K, f, fe_space, config; log = true, rtol = 1e-10)
```



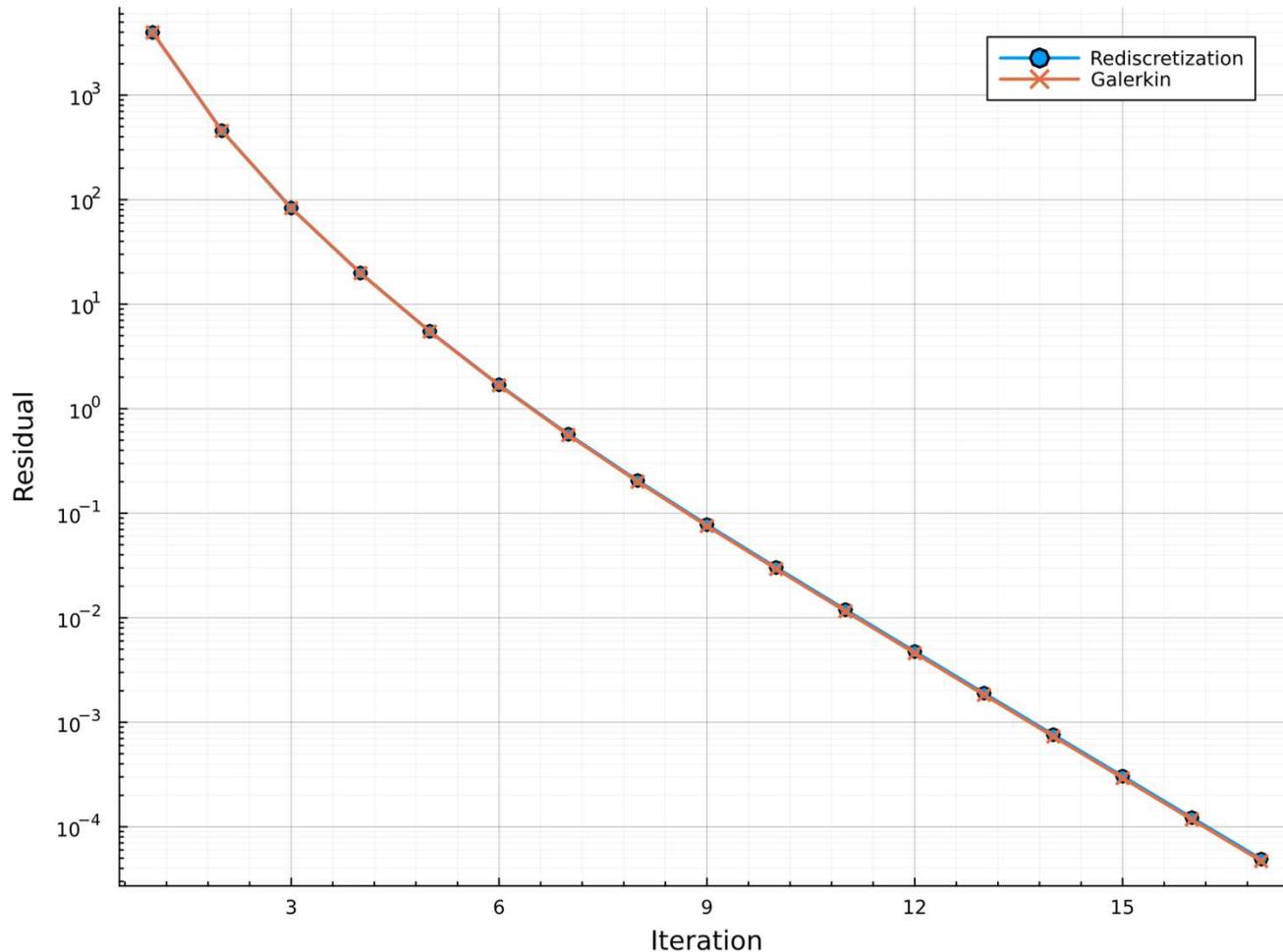
Results

SA-AMG vs P-Multigrid (2D Linear Elasticity – Quadratic element approximation)



Results

Galerkin vs Rediscretization (2D Linear Elasticity)



Future Work and Possible Extensions

- **Isogeometric analysis**
 - Theoretical foundation: <https://www.sciencedirect.com/science/article/pii/S0045782520305326?via%3Dihub>
- **Learning-based AMG coarsening**
 - Theoretical foundation: <https://openreview.net/pdf?id=xXYjxli-2i>
 - GitHub issue: <https://github.com/JuliaLinearAlgebra/AlgebraicMultigrid.jl/issues/84>
- **Support for classical AMG with NNS**
 - Theoretical foundation: <https://onlinelibrary.wiley.com/doi/10.1002/nla.688>
 - GitHub issue: <https://github.com/JuliaLinearAlgebra/AlgebraicMultigrid.jl/issues/80>

