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Outline

What are true vector interpolations?
Why are these useful?
How are these implemented in Ferrite?

What about boundary conditions?
Why are these implemented in Ferrite?
How should you use them?
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What are vector interpolations

Current vectorized interpolations

* Based on scalar interpolations
N (€) = ‘”‘u[“]. N3 (€) = [”ﬁf{}]= N5(€) = M’Erm]

T o 0 [ o
NoE) = M, [EJ] . IN4(E) = [M‘a':'ﬂl . Nelg) = _J'Lf:l[-f:l]

* Vectors aligned with coordinate system

* Associated with algebraic nodes

Lagrange
* Inherits component-wise the continuity of the grang

scalar interpolation
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What are vector interpolations

True vector interpolations

» Directly vector shape functions, e.g.
RaviartThomas{RefTriangle, 1}

N (€)= E;- N1:£}=[‘f'£; l]. N3[51=[¢ & ]

* Vectors aligned with the cell

» Associated with different entities, e.g. edges
and faces

« Allows normal/tangential continuity across RaviartThomas
element borders

Nedelec
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Why? The heat equation

Insulated, g, =0

Energy conservation: glx) -V =0
Fourler’s law: g{x) = —k{z) [¥T{z]|

How will the heat flux
field look like?

Prescribed, T
Preacribed, T = 41

Insulated, g, = 0

K. A. Meyer: True vector interpolations



Insulated, g, =0

By
L]
X
=
)
&
=
0,

Insulated, g, = 0

Prescribed, T

CHALMERS

vvvvvvvvvvvvvvvvvvvvvv

K. A. Meyer: True vector interpolations



Why? The heat equation

How can we visualize the heat flux?

Ly projection

@ Dhata function, fix)
¢ FE-approximation, gle] =% " ""' N,

e minimize ¢ = [ |[f{x) —g[a:]||1 dil

”:'P JI"N::.:J N () dil a, -Jl"hrqa:y flz) dit =0
9
;::_:. - .::_:. =
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Why? The heat equation me;

Ly projection resulls 00 01 -02 -03 -04

H' qpace Lo apace Hidiv) space

Lagrange{ DiscontinuousLagrange{ RaviartThomas{
RefQuadrilateral, 1} RefQuadrilateral, 1} RefQuadrilateral, 1}

K. A. Meyer: True vector interpolations 8




How are these implemented?

Nodal interpolations

Jl-'ir.'I:'E‘I] = 'ﬁ.l_;-

H(div) interpolations
!
J|'r NE=g,8))f{s)-n; ds =d;; noasum on j
i
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How are these implemented?

Vector interpolations, example: H(div)

RaviartThomas{RefTriangle, 1}

! :

: l i=1
MNAE, +ws) -9y ||#] |J.-s={ :
JE | 0 oi#l

v =§; — £

H(div) interpolations

!
J|'r NE=g,(8))f{8)-n; ds =d;; Dosum on j
i
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How are these implemented?

Vector interpolations, example: H(div)
RaviartThomas{RefTriangle, 1}

Shape function 1 Shape function 2 Shape function 3
1.0 4
1.0 4 1.0
- ” ., 0.5
wr (v v
0.5 0.5
0.0 A
0.0 - 0.0
T T T T T T T T T
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
£ & £
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How are these implemented?

Vectorized interpolations, example:
Lagrange{RefTriangle, 1}()"2

Ferrite.ldentityMapping()

Nix)=N(£(x))
AN AN dEf AN
dr  dE dx  dé
da
d§

N

g o=

1.0

= 0.5 1

0.0 4

T T T T T
0.0 0.5 1.0 15 20

N = shape_value(cellvalues, g_point, shapenr)

N = reference_shape_value(interpolation, local_coord, shapenr)
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How are these implemented?

Vector interpolations, example: H(div) 101
RaviartThomas{RefTriangle, 1}

Ferrite.ldentityMapping()

Niz) = N(&iz)) -

0.5

0.0 1

0.0 0.5 1.0 1.5 20

N = shape_value(cellvalues, g_point, shapenr)

N = reference_shape_value(interpolation, local_coord, shapenr)
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How are these implemented?

Vector interpolations, example: H(div) 4,4

RaviartThomas{RefTriangle, 1}

Ferrite.ContravariantPiolaMapping()

N
Niz) = ;o NIE()

Preserves the normal component!

0.0
But sign is wrong! 0.0 05 1.0 f |

N = shape_value(cellvalues, g_point, shapenr)

N = reference_shape_value(interpolation, local_coord, shapenr)
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How are these implemented?

Vector interpolations, example: H(div)
RaviartThomas{RefTriangle, 1}
Ferrite.ContravariantPiolaMapping()
N(z) = d—" N (g(x))

' det(J}
Introduce the facet direction:

; +1  pesitive facet
i = .
—1 negative facet

1.0 1

= 0.5 1

0.0 0.5 1.0 1.5 2.0

N = shape_value(cellvalues, g_point, shapenr)

N = reference_shape_value(interpolation, local_coord, shapenr)

K. A. Meyer: True vector interpolations




How are these implemented?

Facet direction
cell = QuadraticTriangle((n1, n2, n3, n4, n5, n6))

facets(cell)
((n1, n2), (n2, n3), (N3, n1))

d=n3>n27? +1: -1

This is why the cell is required to reinit! cellvalues with non-identity
mapped interpolations
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How are these implemented?

Vector interpolations, example: H(curl)
Nedelec{RefTriangle, 1}

Ferrite.CovariantPiolaMapping()

Preserves the tangential component!

Shape function 1 Shape function 2

Shape function 3

wr 0.5

.tfif'fft.

0.0 A

T
0.0
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What about Boundary Conditions?

NII::LI:IHI - u|:-:-.'|-|:ri|:-r-:.':i]:.:| i I'-ll:'
NAE ) =4;; = 0, = U rpepribea [XE;) for all 2; on 'y
but N_.[:E'J} = r5._. for true vector interpolations. ..

minimize Jr'r |V (), — ul:-,._,.nh,,._.j;r]]: dI”
J

pdbc = ProjectedDirichlet(
field_name::Symbol,
facets::Set{FacetIndex},

ch = ConstraintHandler(dh)
add!(ch, pdbc)

close!(ch)

f::Function)
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What about Boundary Conditions?

— .. :'|:-.'|'::r'l:I = i T |_'1. :|
peeser bar il ik L

----- ProjectedDirichlet ! S

----- Dirichlet

mininize Jr'r |V (), — 1-.:,:-.._,.,.|?,._-f:|::|]: dl”
of Ly

pdbc = ProjectedDirichlet(
field_name::Symbol,
facets::Set{FacetIndex},

ch = ConstraintHandler(dh)
add!(ch, pdbc)

close!(ch)

u_prescribed::Function)
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Why are these implemented in Ferrite?

Multiple cellvalues #674
$¥eLEELl MultiCellValues #680

Split values into geometric mapping and function values #764
CellMultiValues (new attempt) #3872
Implement H(div) and H(curl) interpolations #1145

ip = Lagrange{RefTriangle, 1}()
cv = CellMultiValues(qr, ip, (u=ip”2, p=ip))
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How should you use them?

* L2Projection (#1161)
https://ferrite-fem.github.io/Ferrite.jl/previews/PR116 1/howto/L2flux/

« Heat equation: Mixed H(div) conforming formulation (#798)
https://ferrite-fem.github.io/Ferrite.jl/previews/PR798/tutorials/heat_equation_hdiv/

» Maxwell Discretizations: The Good, The Bad, and The Ugly (#798)
https://ferrite-fem.github.io/Ferrite.jl/previews/PR798/tutorials/maxwell_good_bad_ugly/

Note that links are to previews
and will not work in the future
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Heat equation:

Mixed H(div) conforming formulation

Theory

We start with the strong form of the heat equation: Find the temperature,
u(x), and heat flux, g(x), such that

V-gq=h(x), inQ
q(x) = —k Vu(z),
q(z) - n(x) = g,
u(x) = up,

in (2
on I'y

onI'p

From this strong form, we can formulate the weak form as a mixed formulation.

Findu € Uand g € Q such that

fau[v-q] dﬂ:fauhdn, VY éu € 8U
0 0

/Jq-qdﬂ—/[v-d‘q]kudﬂz—/Jq-nkudI‘, V dq € 6Q
1) 1) r

where we have the function spaces,

U=46U=1L2
Q = {q € H(div) such that g-n = g, onT'p}
0Q = {q € H(div) suchthatg-n =0onIp}

A stable choice of finite element spaces for this problem on grid with triangles
is using

e DiscontinuousLagrange{RefTriangle, k-1} I’t:iral:i[:vru'.:':r(ima\i:ingL2

* BrezziDouglasMarini{RefTriangle, k} for approximating H (div)
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Heat equation:
Mixed H(div) conforming formulation

« Expected since temperature is discontinuous (L2)

* Boundary flux “exact”

temperature

Theory

We start with the strong form of the heat equation: Find the temperature,
u(e), and heat flux, g(z), such that
V-g=h(z), inQ
g(z) = —k Vu(z), inQ
g(z) n(z) =g, only
uw(z) =up, onlp

From this strong form, we can formulate the weak form as a mixed formulation.
Findu € Uand g € @ such that

/5u[v-q]dn=/5uhdn, Y du € 6U
0 kY

/6q-qu—/[V-6q]kudQ:—/Jq-nkudI‘, ¥ dq € 6Q
) 0 r

where we have the function spaces,

U=46U=L?
Q = {q € H(div) such that g-n = g, on I'p}
8Q = {q € H(div) such that g-m = 0on I'p}

A stable choice of finite element spaces for this problem on grid with triangles
is using

* DiscontinuousLagrange{RefTriangle, k-1} for approximating L?

* BrezziDouglasMarini{RefTriangle, k} for approximating H (div)
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Maxwell Discretizations:
The Good, The Bad, and The Ugly

Exact
curl(curl(E)) =0 in 10- 00
le(E) =0 1in Q 0.5 -0.5
E-t=g onl .
Choose analytical E and ealeulate g e
0.5 15
E et () = grad(r?/? sin(260/3))
1.0 20

I I 1

T 1
-1.0 -05 0.0 0.5 1.0
X1

Jay Gopalakrishnan (Portland State University) Maxwell Discretizations: The Good, The Bad & The Ugly
from the graduate course MTH 653: Advanced Numerical Analysis (Spring 2019)
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https://web.pdx.edu/~gjay/pub/MaxwellGoodBadUgly.html

Maxwell Discretizations: £
The Good, The Bad, and The Ugly cxmies

Lagrange (h = 0.01) Nedelec (h = 0.01) Exact
. 0.0
-0.5
-1.0 i
-1.5
-2.0

Jay Gopalakrishnan (Portland State University) Maxwell Discretizations: The Good, The Bad & The Ugly
from the graduate course MTH 653: Advanced Numerical Analysis (Spring 2019)

I I 1 I T 1

1 I 1 1 I 1 1 T 1
-1.0 -05 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
X1 X1 X1
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Maxwell Discretizations:
The Good, The Bad, and The Ugly

10—1.0 -
10—1.5 -
S
o
10—2.0 -
— Lagrange
10729 1 Nedelec
10I—2.4 10I—2.1 1OI—1.B 10I—1.5 10I—1.2

mesh size, h

Jay Gopalakrishnan (Portland State University) Maxwell Discretizations: The Good, The Bad & The Ugly
from the graduate course MTH 653: Advanced Numerical Analysis (Spring 2019)
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Ferrite now has true vector interpolations
Conclusions

What to use it for?

* Useful if you work with Maxwell’'s equations — H(curl)

* Applications for dual/mixed formulations with fluxes

« Can be useful for correct postprocessing

What’s next?

« Some missing implementations in 3D for H(curl) (issues/prs are open)

+ True tensor-valued interpolations (Double[Contra/Co]variantPiolaMapping)
« Supportin IGA,j| (@Basavesh)
« CellMultiValues ©
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