DTU

o
o
o

Introduction to the Finite Element Toolbox

.Ferrite.jl

Kim Louisa Auth
: : _ Knut Andreas Meyer
Section of Solid Mechanics _
Fredrik Ekre

DTU

Introduction to Ferrite.jl

Fe rrite.jl Kim Louisa Auth

 w—
q
| cm

I

Outline

* What is the Julia Programming Language?
» History and users of Ferrite. |l

« What is Ferrite?
« The FEM Puzzle Pieces

* How to use Ferrite?

 Research examples
« Concluding remarks and questions

Introduction to Ferrite.jl

Fe rrlte_Jl Kim Louisa Auth

 w—
q
| cm

I

What is Julia?

* Open Source (MIT License)
 Ayoung language
» First public in 2012
* Release 1.0in 2018
* Currently 1.11.6
« “Easy as python”
« High-level dynamic programing language

 “Fastas C”
e Just-in-time compilation

Introduction to Ferrite.jl

julia

Fe rrite.jl Kim Louisa Auth

=
—
—

I

History and users of Ferrite.jl

» Kristoffer Carlsson & Fredrik Ekre, Chalmers (2016)
» A toolbox providing FE building blocks:

» Inspired by Deal.ii
 Adoption

« 37 different contributors
« 394 github stars / 166 members in Slack

* FerriteCon
« 2022: Braunschweig, Germany
« 2023: Bochum, Germany
« 2024: Gothenburg, Sweden
« 2025: Copenhagen, Denmark
* Version 1.0 released in 2024

Introduction to Ferrite.jl

Fe rrite-_jl Kim Louisa Auth

&
United Kingdom %

démocratique

W]

Kasakcran

Usiinalne

=
]
—

FEM Puzzle Pieces: What does Ferrite provide?

I

1) Geometry - Simple builtin mesh generator
2) Mesh = [g
1tTe .
3) Degrees _Of Fr « Abaqus input fii-je parser
* Vector field, FerriteMeshParser.jl
« Scalar field, 1y
4) Tools for assembly
« Shape functions evaluation (interpolations)
« Mapping shape functions to cell coordinates
« Quadrature rules
» Assemble local into to global sparse matrix
5) Constraint handling
6) Linear solver mp-|-
7) Post-processing
* Quadrature point data (L2Projector)

 Visualization==1. Buitin VTK (ParaView) export
FerriteViz,jl

IIWII
LinearSolve.jl

Fe rrlte-_Jl Kim Louisa Auth Introduction to Ferrite.jl

 w—
q
| cm

I

FEM Puzzle Pieces: How does Ferrite do that?

1) Tensors.|l|

2) Stationary heat equation (Poisson’s equation)

4) Change to linear elasticity

5) Advanced setup
« Porous media with solid aggregates

)
)
3) Triangle to Quadrilateral & 2D -> 3D
)
)

* Mixed element shapes

6) Advanced showcase
Navier-Stokes with DifferentialEquations.jl

/) Research examples

Fe rrite.jl Kim Louisa Auth

Introduction to Ferrite.jl

https://ferrite-fem.github.io/Ferrite.jl/dev/tutorials/heat_equation/
https://ferrite-fem.github.io/Ferrite.jl/dev/tutorials/heat_equation/
https://ferrite-fem.github.io/Ferrite.jl/dev/tutorials/heat_equation/
https://ferrite-fem.github.io/Ferrite.jl/dev/tutorials/linear_elasticity/
https://ferrite-fem.github.io/Ferrite.jl/dev/tutorials/porous_media/
https://ferrite-fem.github.io/Ferrite.jl/dev/tutorials/porous_media/
https://ferrite-fem.github.io/Ferrite.jl/dev/tutorials/ns_vs_diffeq/
https://ferrite-fem.github.io/Ferrite.jl/dev/tutorials/ns_vs_diffeq/

DoF Distribution

grid = generate_grid(Triangle, (20, 20));
ip = Lagrange{RefTriangle, 1}()
Ip2 = Lagrange{RefTriangle, 2}()

dh = DofHandler(grid)
add!(dh, :u, ip)
add!(dh, v, ip2)
add!(dh, :w, ip”2)
closel(dh);

Lagrange{RefTriangle, 1}() Lagrange{RefTriangle,2}() Lagrange{RefTriangle, 1}()"2

Fe rrite-_jl Kim Louisa Auth Introduction to Ferrite.jl JUIIa

=
—
—

Assembly: Calculate cell contribution

I

Setup

Iip = Lagrange{RefTriangle, 1}()
Ip_geo = ip

gr = QuadratureRule{RefTriangle}(2)
cellvalues = CellValues(qr, ip, ip_geo)

Element routine

function element _routine!(Ke::Matrix, fe::Vector, cellvalues::CellValues, x::Vector

reinit!(cellvalues, x) .
Heat Equation

for q_point in 1:getnquadpoints(cellvalues)

d0 = getdetldV(cellvalues, g point)

for i in 1:getnbasefunctions(cellvalues) / v5u * VU dQ — / 5’11, dQ
2 2

8N = shape_value(cellvalues, g_point, i)
VSN = shape_gradient(cellvalues, q_point, i)

fe[i] += 6N * dO

for j in 1:getnbasefunctions(cellvalues) |:f V5NZ . VNJ dQ] CLj — / 5Nz dQ
Q2 Q

VN = shape_gradient(cellvalues, q_point, j)
Ke[i, j] += (V8N - UN) * dQ
end
end) | LI?‘
end 7/3 aj II’

return Ke, fe
end

Fe rrlte-_Jl Kim Louisa Auth Introduction to Ferrite.jl

function element_routine!(Ke::Matrix, fe::\Vector, cellvalues::CellValues, cellcoords::Vector)
Map shape function gradients etc. to current geometry
reinit!(cellvalues, cellcoords)
Loop over quadrature points
for g_point in 1:getnquadpoints(cellvalues)
Get the quadrature weight
dQ = getdetJdV(cellvalues, g_point)
Loop over test shape functions
for i in T:getnbasefunctions(cellvalues)
SNi = shape_value(cellvalues, q_point, i)
VONi = shape_gradient(cellvalues, q_point, i)
Add heat source to fe
fe[i] += 6Ni * dQ
Loop over trial shape functions
for j in 1:getnbasefunctions(cellvalues)
VN; = shape_gradient(cellvalues, g_point,))

Heat Equation

Add contribution to Ke
Keli, jl += (V8N; - VNj) * dQ f Vou - Vu dS) = / ou dS2
end Q2 Q
end
return Ke, fe §2 Q
end K;;a; = f;

e Ferrlte-_Jl Kim Louisa Auth Introduction to Ferrite.jl 10 JUIIa

function element_routine!(Ke::Matrix, fe::\Vector, cellvalues::CellValues, cellcoords::Vector)
Map shape function gradients etc. to current geometry
reinit!(cellvalues, cellcoords)
Loop over quadrature points
for g_point in 1:getnquadpoints(cellvalues)
Get the quadrature weight
dQ = getdetJdV(cellvalues, g_point)
Loop over test shape functions
for i in T:getnbasefunctions(cellvalues)
SNi = shape_value(cellvalues, q_point, i)
VONi = shape_gradient(cellvalues, q_point, i)
Add heat source to fe @ test function i
fe[i] += 6Ni * dQ
Loop over trial shape functions
for j in 1:getnbasefunctions(cellvalues)
VN; = shape_gradient(cellvalues, g_point,))
Add contribution to Ke @ test i, trial j
Keli, j] += (V&N;i - VN;j) * dQ
end

d
y [/ VN, - VN, dQ]
Q

Heat Equation

f Vou - Vu dS2
Q

end
return Ke, fe
end

% Fe rrlte-_Jl Kim Louisa Auth Introduction to Ferrite.jl 11

Assembly: Assemble cell contribution

function assemble_global(cellvalues::CellValues, dh::DofHandler)

K = allocate_matrix(dh)
f = zeros(ndofs(dh))

n_basefuncs = getnbasefunctions(cellvalues)
Ke = zeros(n_basefuncs, n_basefuncs)
fe = zeros(n_basefuncs)

assembler = start_assemble(K, f)
for cell in Celllterator(dh)
filll(Ke, 0); filll(fe, 0)

element_routine!(Ke, fe, cellvalues, getcoordinates(cell))

assemblel(assembler, celldofs(cell), Ke, fe)

end
return K, f
end

Juha

Fe rrlte-_Jl Kim Louisa Auth Introduction to Ferrite.jl 12

Constraints: Dirichlet Boundary Conditions

grid, dh, cellvalues = setup()
K, f = assemble_global(cellvalues, dh)
ch = ConstraintHandler(dh);

0Q) = union(getfacetset(grid, "left"), getfacetset(grid, "right"),
getfacetset(grid, "top"), getfacetset(grid, "bottom"));

add!(ch, Dirichlet(:u, 0Q, (x, t) -> 0))
closel!(ch)

apply!(K, f, ch)

Ferrlte-_Jl Kim Louisa Auth Introduction to Ferrite.jl 13 JUIIa

Putting it together: Stationary Heat Equation

u=KHWf

VTKGridFile("heat_equation”, dh) do vtk
write_solution(vtk, dh, u)

end

https:/ferrite-fem.qgithub.io/
Ferrite.jl/dev/tutorials/heat_equation/

Introduction to Ferrite.jl

Fe rrite-_jl Kim Louisa Auth

2.9e01

[0.25

—0.2
—0.15

— 0.1

t 0.05
0.0e+00

3

https://ferrite-fem.github.io/Ferrite.jl/dev/tutorials/heat_equation/
https://ferrite-fem.github.io/Ferrite.jl/dev/tutorials/heat_equation/
https://ferrite-fem.github.io/Ferrite.jl/dev/tutorials/heat_equation/
https://ferrite-fem.github.io/Ferrite.jl/dev/tutorials/heat_equation/
https://ferrite-fem.github.io/Ferrite.jl/dev/tutorials/heat_equation/

 a

I

Change Triangles to Quadrilateral?

grid = generate_grid(Triangle, (20, 20));
ip = Lagrange{RefTriangle, 1}()
gr = QuadratureRule{RefTriangle}(2)

grid = generate_grid(Quadrilateral, (20, 20));
ip = Lagrange{RefQuadrilateral, 1}()
gr = QuadratureRule{RefQuadrilateral}(2)

Introduction to Ferrite.jl

Fe rrite-jl Kim Louisa Auth

=
]
—

I

Change 2d to 3d?

grid = generate_grid(Triangle, (20, 20));
ip = Lagrange{RefTriangle, 1}()
gr = QuadratureRule{RefTriangle}(2)

grid = generate_grid(Tetrahedron, (20, 20, 20));
ip = Lagrange{RefTetrahedron, 1}()
gr = QuadratureRule{RefTetrahedron}(2)

Introduction to Ferrite.jl

Fe rrite-jl Kim Louisa Auth

w—
q
 a

Change to linear elasticity

I

Lagrange{RefTriangle, 1}()

Lagrange{RefTriangle, 1}()/2

+ new physics

function element routine! (Ke::Matrix, fe::Vector, cv::CellValues, cellcoords::Vector)
reinit!(cv, cellcoords)
for q_point in 1:getnquadpoints(cv)
dQ = getdetldV(cv, g_point)
C = calculate_stiffness(1.0, 2.0)
for i in 1:getnbasefunctions(cv)
6N; = shape_value(cv, g_point, i)
V8N; = shape_gradient(cv, g_point, i)
fe[i] += O6N; * dQ
fe[i] += (6N; - Vec((0.0, -1.0)))* dO
for j in 1:getnbasefunctions(cv)
VN; = shape_gradient(cv, g_point, j)
Ke[i, j] += (VON; - VNy) * dQ
Ke[i, j] += (V6N; [[1 C [VN5) * dQ

end
end
return Ke, fe
end

Fe rrlte-_Jl Kim Louisa Auth Introduction to Ferrite.jl

Change to linear elasticity

function element_routine!(Ke:Matrix, fe::Vector, cv::CellValues, cellcoords::Vector)

reinit!(cv, cellcoords) # Map cellvalues to cell geometry
for g_point in 1:getnquadpoints(cv) # Loop over quadrature points
dQ = getdetldV(cv, g_point) # Get the quadrature weight
#=new=# C = calculate_stiffness(1.0, 2.0) # Stiffness from before
for i in T:getnbasefunctions(cv) # Loop over test shape functions

ON; = shape_value(cv, g_point, i)
V&N = shape_gradient(cv, gq_point, i)
fel[i]# fe[i] += &N; * dQ
#=new=# fe[i] += (ONi - Vec((0.0, -1.0)))* dQ # Add body force to fe
for j in 1:getnbasefunctions(cv) # Loop over trial shape functions
VN; = shape_gradient(cv, g_point, j)
Keli, j]# Keli, j] += (VON; - VN)) * dQ
#=new=+# Keli, j] += (VONi [[1 C [[1 VN)) * dQ # Add contribution to Ke
end
end
end
return Ke, fe
end

Fe rrlte-_Jl Kim Louisa Auth Introduction to Ferrite.jl 18 JUIIa

DTU

-— More advanced cases:
>
Porous media, grid with mixed element shapes

Solid
Pt aggregates

1 (Linear elasticity)

\ - Porous
matrix

(Linear poro-
elasticity)

1.3e+02

RN

— 100

— 80

strain 22
|
S
pressure

— 40

l 20
[] T (W sl)

BEEEEEE

T O O W O W WL WL

Fe rrlte-_Jl Kim Louisa Auth Introduction to Ferrite.jl

DTU Solid aggregates Porous matrix
" More advanced cases: Linear elasticity Linear poro-elasticity
o

Displacement u(x) Pressure p(x), and displacement u(x)

Porous media, mixed Ql’ld Quads and triangles Quads and triangles

Define interpolations
Quadratic displacement, quad elements
ipu_quad = Lagrange{RefQuadrilateral, 2}()"2
Quadratic displacement, triangular elements
ipu_tri = Lagrange{RefTriangle, 2}()"2

Linear pressure, quad elements

ipp_quad = Lagrange{RefQuadrilateral, 1}()

Linear pressure, triangular elements

ipp_tri = Lagrange{RefTriangle, 1}()

Quadrature rules
gr_quad = QuadratureRule{RefQuadrilateral}(2) # 2x2 quadrature
gr_tri = QuadratureRule{RefTriangle}(2) # 3 quadrature points

X N
oSy
.. [T
e - =========-MIIIII

--"h.f ' :.‘d . .
st Fe rrlte-Jl Kim Louisa Auth Introduction to Ferrite.jl 20 JUIIa

DTU Solid aggregates Porous matrix
" More advanced cases: Linear elasticity Linear poro-elasticity
o

Displacement u(x) Pressure p(x), and displacement u(x)

Porous media, mixed Ql’ld Quads and triangles Quads and triangles

Setup the DofHandler

dh = DofHandler(grid)

Solid quads

sdh_solid_quad = SubDofHandler(dh, getcellset(grid,"solid4"))
add!(sdh_solid_quad, :u, ipu_quad)

Solid triangles

sdh_solid_tri = SubDofHandler(dh, getcellset(grid,"solid3"))
add!(sdh_solid_tri, :u, ipu_tri)

Porous quads

sdh_porous_quad = SubDofHandler(dh, getcellset(grid, "porous4"))
add!(sdh_porous_quad, :u, ipu_quad)

add!(sdh_porous_quad, :p, ipp_quad)

Porous triangles

sdh_porous_tri = SubDofHandler(dh, getcellset(grid, "porous3"))
add!(sdh_porous_tri, :u, ipu_tri)

add!(sdh_porous_tri, :p, ipp_tri)

closel(dh)

B ANEEEEREEneeely| °
B roite | |
i" AR Fe rrlte-_]' Kim Louisa Auth Introduction to Ferrite.jl 21 Ju Ia

.Ferrite.jl + @ .

DifferentialEquations.jl

— 2.2e+00
—2

1.5

1

v Magnitude

0.5

— 0.0e+00

B
. Jula

Fe rrlte-_Jl Kim Louisa Auth Introduction to Ferrite.jl

=
—
—

I

Ferritel

Some research examples

Kim Louisa Auth Introduction to Ferrite.jl

 w—
q
| cm

I

Homogenization of Structural Batteries

David Rollin: Institute of Applied Mechanics, TU Braunschweig
Modeling interfacial behavior in electroactive materials

Direct Numerical Simulation (DNS) of an example

problem

Corresponding macro-scale problem

1.0 4

5 0.5 1

0.0

Electric potential

Lithium concentration

Anion concentration

D. R. Rollin, F. Larsson, K. Runesson, and R. Janicke, “Upscaling of chemo-mechanical properties of
battery electrode material,” Int. J. Solids Struct., vol. 281, no. February, p. 112405, 2023,

Fe rrlte-_Jl Kim Louisa Auth Introduction to Ferrite.jl

0.95

0.90

0.85 CLi

0.80

0.75

 w—
q
| cm

<= : - :
> — Homogenization of Structural Batteries oo
. . Potentials at t=0.0
David Rollin , L .
Direct numerical simulation
u 1.0¢
1.0 &1 0
0.54 0.5
0.0+— , . 0.0
0 5 10
0.5
Single potential Lithium concentration
1.0 = 1.0 0.95
0.5 0.5
0.0 . . 0.0 0.90
0 o 10 0.85 CLi
Dual potential (constant-linear prolongation) 050
ﬁ(P) d
q 0.75
o 1.0 |
0_ 0 i L : . Anion concentration
0 5 10 18
ﬁ(x[: 0.5
1.0 1 o
0.5 '
0ol | | 0.0
O 5 10 1:1
D. R. Rollin, F. Larsson, K. Runesson, and R. Janicke, “Upscaling of chemo-mechanical properties of
battery electrode material,” Int. J. Solids Struct., vol. 281, no. February, p. 112405, 2023,

Fe rrlte-_Jl Kim Louisa Auth Introduction to Ferrite.jl

 w—
q
| cm

Cardiac Multiphysics

Dennis Ogiermann: Chair of Continuum Mechanics, Ruhr-Universitat Bochum

I

Code:

qgithub.com/termi-
official/Thunderbolt.jl

D. Ogiermann, D. Balzani, and L. E. Perotti, “An Extended Generalized Hill Model for Cardiac Tissue: Comparison with
Different Approaches Based on Experimental Data,” in Functional Imaging and Modeling of the Heart, 2023, pp. 555-564.

Introduction to Ferrite.jl

Fe rrite.jl Kim Louisa Auth

https://github.com/termi-official/Thunderbolt.jl
https://github.com/termi-official/Thunderbolt.jl
https://github.com/termi-official/Thunderbolt.jl
https://github.com/termi-official/Thunderbolt.jl
https://github.com/termi-official/Thunderbolt.jl

== Phase-field Fracture + Gradient Crystal Plasticit

Kim Louisa Auth: Division of Material and Computational Mechanics, Chalmers, Sweden /
Section of Solid Mechanics, DTU, Denmark

Degradation Accumulated plastic strain
20 . | Il-liCI‘O-
free
15 - .
Auth, K. L., Brouzoulis, J., & Ekh, M. (2025).
) Phase-Field Modeling of Ductile Fracture Across
< 10} - - Grain Boundaries in Polycrystals. International
- Journal for Numerical Methods in Engineering,
126(12).
micro-
0 | | hard

Fe rrlte-_Jl Kim Louisa Auth Introduction to Ferrite.jl

 w—
q
| cm

Community and documentation

I

 Documentation and examples: hitps://ferrite-fem.qgithub.io/Ferrite.jl/

« Slack: https://julialang.org/slack/, and join #ferrite-fem

« Getting help
« Sharing code snippets

« Discussion about solving problems, theory, etc.

« Github
 Issues: Requesting features / reporting bugs

* PRs: Making fixes / enhancements

» Discussions: Asking questions

Introduction to Ferrite.jl

Fe rrite.jl Kim Louisa Auth

https://ferrite-fem.github.io/Ferrite.jl/
https://ferrite-fem.github.io/Ferrite.jl/
https://ferrite-fem.github.io/Ferrite.jl/
https://julialang.org/slack/

KR

O

4
K

DO

Ferrite,l

	Slide 1
	Slide 2: Outline
	Slide 3: What is Julia?
	Slide 4: History and users of Ferrite.jl
	Slide 5: FEM Puzzle Pieces: What does Ferrite provide?
	Slide 6: FEM Puzzle Pieces: How does Ferrite do that?
	Slide 8: DoF Distribution
	Slide 9: Assembly: Calculate cell contribution
	Slide 10
	Slide 11
	Slide 12: Assembly: Assemble cell contribution
	Slide 13: Constraints: Dirichlet Boundary Conditions
	Slide 14: Putting it together: Stationary Heat Equation
	Slide 15: Change Triangles to Quadrilateral?
	Slide 16: Change 2d to 3d?
	Slide 17: Change to linear elasticity
	Slide 18: Change to linear elasticity
	Slide 19: More advanced cases: Porous media, grid with mixed element shapes
	Slide 20: More advanced cases: Porous media, mixed grid
	Slide 21: More advanced cases: Porous media, mixed grid
	Slide 22: Navier-Stokes
	Slide 23: Some research examples
	Slide 24: Homogenization of Structural Batteries
	Slide 25: Homogenization of Structural Batteries
	Slide 26: Cardiac Multiphysics
	Slide 27: Phase-field Fracture + Gradient Crystal Plasticity
	Slide 28: Community and documentation
	Slide 29

