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Ferrite.jl

Outline

• What is the Julia Programming Language?

• History and users of Ferrite.jl

• What is Ferrite?

• The FEM Puzzle Pieces

• How to use Ferrite?

• Research examples

• Concluding remarks and questions
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Ferrite.jl

What is Julia?

• Open Source (MIT License)

• A young language

• First public in 2012

• Release 1.0 in 2018

• Currently 1.11.6

• “Easy as python”

• High-level dynamic programing language

• “Fast as C”

• Just-in-time compilation
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History and users of Ferrite.jl

• Kristoffer Carlsson & Fredrik Ekre, Chalmers (2016)

• A toolbox providing FE building blocks:

• Inspired by Deal.ii

• Adoption

• 37 different contributors 

• 394 github stars / 166 members in Slack

• FerriteCon

• 2022: Braunschweig, Germany

• 2023: Bochum, Germany

• 2024: Gothenburg, Sweden

• 2025: Copenhagen, Denmark

• Version 1.0 released in 2024
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FEM Puzzle Pieces: What does Ferrite provide?
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1) Geometry

2) Mesh

3) Degrees of Freedom handling

• Vector field, u 

• Scalar field, p (only purple domain)

4) Tools for assembly

• Shape functions evaluation (interpolations)

• Mapping shape functions to cell coordinates

• Quadrature rules

• Assemble local into to global sparse matrix

5) Constraint handling

6) Linear solver

7) Post-processing

• Quadrature point data (L2Projector)

• Visualization

• Simple builtin mesh generator

• Gmsh interface package

FerriteGmsh.jl

• Abaqus input file parser

FerriteMeshParser.jl

• ”\”
• LinearSolve.jl

• Builtin VTK (ParaView) export

• FerriteViz.jl
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FEM Puzzle Pieces: How does Ferrite do that?
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1) Tensors.jl

2) Stationary heat equation (Poisson’s equation)

3) Triangle to Quadrilateral & 2D -> 3D

4) Change to linear elasticity

5) Advanced setup

• Porous media with solid aggregates

• Mixed element shapes

6) Advanced showcase

Navier-Stokes with DifferentialEquations.jl

7) Research examples

https://ferrite-fem.github.io/Ferrite.jl/dev/tutorials/heat_equation/
https://ferrite-fem.github.io/Ferrite.jl/dev/tutorials/heat_equation/
https://ferrite-fem.github.io/Ferrite.jl/dev/tutorials/heat_equation/
https://ferrite-fem.github.io/Ferrite.jl/dev/tutorials/linear_elasticity/
https://ferrite-fem.github.io/Ferrite.jl/dev/tutorials/porous_media/
https://ferrite-fem.github.io/Ferrite.jl/dev/tutorials/porous_media/
https://ferrite-fem.github.io/Ferrite.jl/dev/tutorials/ns_vs_diffeq/
https://ferrite-fem.github.io/Ferrite.jl/dev/tutorials/ns_vs_diffeq/
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DoF Distribution
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grid = generate_grid(Triangle, (20, 20));
ip = Lagrange{RefTriangle, 1}()
ip2 = Lagrange{RefTriangle, 2}()

dh = DofHandler(grid)
add!(dh, :u, ip)
add!(dh, :v, ip2)
add!(dh, :w, ip^2)
close!(dh);
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Assembly: Calculate cell contribution
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Setup

Element routine

ip = Lagrange{RefTriangle, 1}() # Defined before
ip_geo = ip # Geometric interpolation
qr = QuadratureRule{RefTriangle}(2) # Numerical integration
cellvalues = CellValues(qr, ip, ip_geo) # “Shape function object”



Ferrite.jl

function element_routine!(Ke::Matrix, fe::Vector, cellvalues::CellValues, cellcoords::Vector)
# Map shape function gradients etc. to current geometry
reinit!(cellvalues, cellcoords)
# Loop over quadrature points
for q_point in 1:getnquadpoints(cellvalues)

# Get the quadrature weight
dΩ = getdetJdV(cellvalues, q_point)
# Loop over test shape functions
for i in 1:getnbasefunctions(cellvalues)

δNᵢ = shape_value(cellvalues, q_point, i)
∇δNᵢ = shape_gradient(cellvalues, q_point, i)
# Add heat source to fe
fe[i] += δNᵢ * dΩ
# Loop over trial shape functions
for j in 1:getnbasefunctions(cellvalues)

∇Nⱼ = shape_gradient(cellvalues, q_point, j)
# Add contribution to Ke
Ke[i, j] += (∇δNᵢ ⋅ ∇Nⱼ) * dΩ

end
end

end
return Ke, fe

end
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Ferrite.jl

function element_routine!(Ke::Matrix, fe::Vector, cellvalues::CellValues, cellcoords::Vector)
# Map shape function gradients etc. to current geometry
reinit!(cellvalues, cellcoords)
# Loop over quadrature points
for q_point in 1:getnquadpoints(cellvalues)

# Get the quadrature weight
dΩ = getdetJdV(cellvalues, q_point)
# Loop over test shape functions
for i in 1:getnbasefunctions(cellvalues)

δNᵢ = shape_value(cellvalues, q_point, i)
∇δNᵢ = shape_gradient(cellvalues, q_point, i)
# Add heat source to fe @ test function i
fe[i] += δNᵢ * dΩ
# Loop over trial shape functions
for j in 1:getnbasefunctions(cellvalues)

∇Nⱼ = shape_gradient(cellvalues, q_point, j)
# Add contribution to Ke @ test i, trial j
Ke[i, j] += (∇δNᵢ ⋅ ∇Nⱼ) * dΩ

end
end

end
return Ke, fe

end
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Assembly: Assemble cell contribution
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function assemble_global(cellvalues::CellValues, dh::DofHandler)
# Allocate global stiffness matrix, K, and force vector, f
K = allocate_matrix(dh)
f = zeros(ndofs(dh))
# Allocate the element stiffness matrix and element force vector
n_basefuncs = getnbasefunctions(cellvalues)
Ke = zeros(n_basefuncs, n_basefuncs)
fe = zeros(n_basefuncs)

assembler = start_assemble(K, f) # Create an assembler
for cell in CellIterator(dh) # Loop over all cells

fill!(Ke, 0); fill!(fe, 0) # Reset Ke and fe
# Compute element contribution
element_routine!(Ke, fe, cellvalues, getcoordinates(cell))
# Assemble local, Ke and fe, into global, K and f
assemble!(assembler, celldofs(cell), Ke, fe)

end
return K, f

end
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Constraints: Dirichlet Boundary Conditions
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grid, dh, cellvalues = setup() # Pseudocode, see earlier slides

K, f = assemble_global(cellvalues, dh)

ch = ConstraintHandler(dh);

∂Ω = union(getfacetset(grid, "left"), getfacetset(grid, "right"),
getfacetset(grid, "top"), getfacetset(grid, "bottom"));

add!(ch, Dirichlet(:u, ∂Ω, (x, t) -> 0))

close!(ch)

apply!(K, f, ch) # Modify K and f to fulfill constraints
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Putting it together: Stationary Heat Equation
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u = K \ f # Solve linear system 

# Export solution
VTKGridFile("heat_equation", dh) do vtk

write_solution(vtk, dh, u)
end

https://ferrite-fem.github.io/

Ferrite.jl/dev/tutorials/heat_equation/

https://ferrite-fem.github.io/Ferrite.jl/dev/tutorials/heat_equation/
https://ferrite-fem.github.io/Ferrite.jl/dev/tutorials/heat_equation/
https://ferrite-fem.github.io/Ferrite.jl/dev/tutorials/heat_equation/
https://ferrite-fem.github.io/Ferrite.jl/dev/tutorials/heat_equation/
https://ferrite-fem.github.io/Ferrite.jl/dev/tutorials/heat_equation/
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Change Triangles to Quadrilateral?
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# Old setup
grid = generate_grid(Triangle, (20, 20));
ip = Lagrange{RefTriangle, 1}()
qr = QuadratureRule{RefTriangle}(2)

# New setup
grid = generate_grid(Quadrilateral, (20, 20));
ip = Lagrange{RefQuadrilateral, 1}()
qr = QuadratureRule{RefQuadrilateral}(2)
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Change 2d to 3d?
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# Old setup
grid = generate_grid(Triangle, (20, 20));
ip = Lagrange{RefTriangle, 1}()
qr = QuadratureRule{RefTriangle}(2)

# New setup
grid = generate_grid(Tetrahedron, (20, 20, 20));
ip = Lagrange{RefTetrahedron, 1}()
qr = QuadratureRule{RefTetrahedron}(2)
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Change to linear elasticity
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# Old setup
ip = Lagrange{RefTriangle, 1}()

# New setup (vector problem in 2d)
ip = Lagrange{RefTriangle, 1}()^2

+ new physics



Ferrite.jl

Change to linear elasticity
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function element_routine!(Ke::Matrix, fe::Vector, cv::CellValues, cellcoords::Vector)
reinit!(cv, cellcoords)                          # Map cellvalues to cell geometry
for q_point in 1:getnquadpoints(cv)              # Loop over quadrature points

dΩ = getdetJdV(cv, q_point) # Get the quadrature weight
#=new=# C = calculate_stiffness(1.0, 2.0)            # Stiffness from before

for i in 1:getnbasefunctions(cv)    # Loop over test shape functions
δNᵢ = shape_value(cv, q_point, i)       
∇δNᵢ = shape_gradient(cv, q_point, i)    
fe[i] += δNᵢ * dΩ # Add heat source to fe

#=new=# fe[i] += (δNᵢ ⋅ Vec((0.0, -1.0)))* dΩ ⋅ # Add body force to fe
for j in 1:getnbasefunctions(cv) # Loop over trial shape functions

∇Nⱼ = shape_gradient(cv, q_point, j)
Ke[i, j] += (∇δNᵢ ⋅ ∇Nⱼ) * dΩ # Add contribution to Ke

#=new=# Ke[i, j] += (∇δNᵢ ⊡ C ⊡ ∇Nⱼ) * dΩ # Add contribution to Ke 
end

end
end
return Ke, fe

end

# fe[i] += δNᵢ * dΩ

# Ke[i, j] += (∇δNᵢ ⋅ ∇Nⱼ) * dΩ
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More advanced cases: 

Porous media, grid with mixed element shapes
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Solid 

aggregates 

(Linear elasticity)

Porous 

matrix

(Linear poro-

elasticity)
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More advanced cases: 

Porous media, mixed grid

Kim Louisa Auth Introduction to Ferrite.jl 20

# Define interpolations
#  Quadratic displacement, quad elements
ipu_quad = Lagrange{RefQuadrilateral, 2}()^2
#  Quadratic displacement, triangular elements
ipu_tri = Lagrange{RefTriangle, 2}()^2
#  Linear pressure, quad elements
ipp_quad = Lagrange{RefQuadrilateral, 1}() 
#  Linear pressure, triangular elements
ipp_tri = Lagrange{RefTriangle, 1}()

# Quadrature rules
qr_quad = QuadratureRule{RefQuadrilateral}(2) # 2x2 quadrature
qr_tri = QuadratureRule{RefTriangle}(2) # 3 quadrature points

Solid aggregates 

Linear elasticity

Displacement u(x)

Quads and triangles

Porous matrix

Linear poro-elasticity

Pressure p(x), and displacement u(x)

Quads and triangles
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More advanced cases: 

Porous media, mixed grid
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# Setup the DofHandler
dh = DofHandler(grid)
# Solid quads
sdh_solid_quad = SubDofHandler(dh, getcellset(grid,"solid4"))
add!(sdh_solid_quad, :u, ipu_quad)
# Solid triangles
sdh_solid_tri = SubDofHandler(dh, getcellset(grid,"solid3"))
add!(sdh_solid_tri, :u, ipu_tri)
# Porous quads
sdh_porous_quad = SubDofHandler(dh, getcellset(grid, "porous4"))
add!(sdh_porous_quad, :u, ipu_quad)
add!(sdh_porous_quad, :p, ipp_quad)
# Porous triangles
sdh_porous_tri = SubDofHandler(dh, getcellset(grid, "porous3"))
add!(sdh_porous_tri, :u, ipu_tri)
add!(sdh_porous_tri, :p, ipp_tri)

close!(dh)

Solid aggregates 

Linear elasticity

Displacement u(x)

Quads and triangles

Porous matrix

Linear poro-elasticity

Pressure p(x), and displacement u(x)

Quads and triangles
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Navier-Stokes
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Some research examples
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Homogenization of Structural Batteries
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David Rollin: Institute of Applied Mechanics, TU Braunschweig

Modeling interfacial behavior in electroactive materials

D. R. Rollin, F. Larsson, K. Runesson, and R. Jänicke, “Upscaling of chemo-mechanical properties of 

battery electrode material,” Int. J. Solids Struct., vol. 281, no. February, p. 112405, 2023,
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Homogenization of Structural Batteries
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David Rollin

D. R. Rollin, F. Larsson, K. Runesson, and R. Jänicke, “Upscaling of chemo-mechanical properties of 

battery electrode material,” Int. J. Solids Struct., vol. 281, no. February, p. 112405, 2023,
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Cardiac Multiphysics
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Dennis Ogiermann: Chair of Continuum Mechanics, Ruhr-Universität Bochum

D. Ogiermann, D. Balzani, and L. E. Perotti, “An Extended Generalized Hill Model for Cardiac Tissue: Comparison with 

Different Approaches Based on Experimental Data,” in Functional Imaging and Modeling of the Heart, 2023, pp. 555–564.

Code:

github.com/termi-

official/Thunderbolt.jl

https://github.com/termi-official/Thunderbolt.jl
https://github.com/termi-official/Thunderbolt.jl
https://github.com/termi-official/Thunderbolt.jl
https://github.com/termi-official/Thunderbolt.jl
https://github.com/termi-official/Thunderbolt.jl
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Phase-field Fracture + Gradient Crystal Plasticity
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Kim Louisa Auth: Division of Material and Computational Mechanics, Chalmers, Sweden / 

Section of Solid Mechanics, DTU, Denmark

Auth, K. L., Brouzoulis, J., & Ekh, M. (2025). 

Phase-Field Modeling of Ductile Fracture Across 
Grain Boundaries in Polycrystals. International 
Journal for Numerical Methods in Engineering, 

126(12). 
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• Documentation and examples: https://ferrite-fem.github.io/Ferrite.jl/

• Slack: https://julialang.org/slack/, and join #ferrite-fem 

• Getting help

• Sharing code snippets

• Discussion about solving problems, theory, etc. 

• Github

• Issues: Requesting features / reporting bugs

• PRs: Making fixes / enhancements

• Discussions: Asking questions

Community and documentation

Kim Louisa Auth Introduction to Ferrite.jl 28

https://ferrite-fem.github.io/Ferrite.jl/
https://ferrite-fem.github.io/Ferrite.jl/
https://ferrite-fem.github.io/Ferrite.jl/
https://julialang.org/slack/
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