
Ferrite.jl

Kim Louisa Auth

Section of Solid Mechanics

DTU

Introduction to the Finite Element Toolbox

Kim Louisa Auth Introduction to Ferrite.jl 1

Co-authors:

Knut Andreas Meyer

Fredrik Ekre

Ferrite.jl

Outline

• What is the Julia Programming Language?

• History and users of Ferrite.jl

• What is Ferrite?

• The FEM Puzzle Pieces

• How to use Ferrite?

• Research examples

• Concluding remarks and questions

Kim Louisa Auth Introduction to Ferrite.jl 2

Ferrite.jl

What is Julia?

• Open Source (MIT License)

• A young language

• First public in 2012

• Release 1.0 in 2018

• Currently 1.11.6

• “Easy as python”

• High-level dynamic programing language

• “Fast as C”

• Just-in-time compilation

Kim Louisa Auth Introduction to Ferrite.jl 3

Ferrite.jl

History and users of Ferrite.jl

• Kristoffer Carlsson & Fredrik Ekre, Chalmers (2016)

• A toolbox providing FE building blocks:

• Inspired by Deal.ii

• Adoption

• 37 different contributors

• 394 github stars / 166 members in Slack

• FerriteCon

• 2022: Braunschweig, Germany

• 2023: Bochum, Germany

• 2024: Gothenburg, Sweden

• 2025: Copenhagen, Denmark

• Version 1.0 released in 2024

Kim Louisa Auth Introduction to Ferrite.jl 4

Ferrite.jl

FEM Puzzle Pieces: What does Ferrite provide?

Kim Louisa Auth Introduction to Ferrite.jl 5 5

1) Geometry

2) Mesh

3) Degrees of Freedom handling

• Vector field, u

• Scalar field, p (only purple domain)

4) Tools for assembly

• Shape functions evaluation (interpolations)

• Mapping shape functions to cell coordinates

• Quadrature rules

• Assemble local into to global sparse matrix

5) Constraint handling

6) Linear solver

7) Post-processing

• Quadrature point data (L2Projector)

• Visualization

• Simple builtin mesh generator

• Gmsh interface package

FerriteGmsh.jl

• Abaqus input file parser

FerriteMeshParser.jl

• ”\”
• LinearSolve.jl

• Builtin VTK (ParaView) export

• FerriteViz.jl

Ferrite.jl

FEM Puzzle Pieces: How does Ferrite do that?

Kim Louisa Auth Introduction to Ferrite.jl 6

1) Tensors.jl

2) Stationary heat equation (Poisson’s equation)

3) Triangle to Quadrilateral & 2D -> 3D

4) Change to linear elasticity

5) Advanced setup

• Porous media with solid aggregates

• Mixed element shapes

6) Advanced showcase

Navier-Stokes with DifferentialEquations.jl

7) Research examples

https://ferrite-fem.github.io/Ferrite.jl/dev/tutorials/heat_equation/
https://ferrite-fem.github.io/Ferrite.jl/dev/tutorials/heat_equation/
https://ferrite-fem.github.io/Ferrite.jl/dev/tutorials/heat_equation/
https://ferrite-fem.github.io/Ferrite.jl/dev/tutorials/linear_elasticity/
https://ferrite-fem.github.io/Ferrite.jl/dev/tutorials/porous_media/
https://ferrite-fem.github.io/Ferrite.jl/dev/tutorials/porous_media/
https://ferrite-fem.github.io/Ferrite.jl/dev/tutorials/ns_vs_diffeq/
https://ferrite-fem.github.io/Ferrite.jl/dev/tutorials/ns_vs_diffeq/

Ferrite.jl

DoF Distribution

Kim Louisa Auth Introduction to Ferrite.jl 8

grid = generate_grid(Triangle, (20, 20));
ip = Lagrange{RefTriangle, 1}()
ip2 = Lagrange{RefTriangle, 2}()

dh = DofHandler(grid)
add!(dh, :u, ip)
add!(dh, :v, ip2)
add!(dh, :w, ip^2)
close!(dh);

n2

n3 n1

u2

u3 u1

v2

v3 v1v6

v5 v4

w1

w2

w5

w6

w3

w4

Lagrange{RefTriangle,1}() Lagrange{RefTriangle,2}() Lagrange{RefTriangle,1}()^2

Ferrite.jl

Assembly: Calculate cell contribution

Kim Louisa Auth Introduction to Ferrite.jl 9

Setup

Element routine

ip = Lagrange{RefTriangle, 1}() # Defined before
ip_geo = ip # Geometric interpolation
qr = QuadratureRule{RefTriangle}(2) # Numerical integration
cellvalues = CellValues(qr, ip, ip_geo) # “Shape function object”

Ferrite.jl

function element_routine!(Ke::Matrix, fe::Vector, cellvalues::CellValues, cellcoords::Vector)
Map shape function gradients etc. to current geometry
reinit!(cellvalues, cellcoords)
Loop over quadrature points
for q_point in 1:getnquadpoints(cellvalues)

Get the quadrature weight
dΩ = getdetJdV(cellvalues, q_point)
Loop over test shape functions
for i in 1:getnbasefunctions(cellvalues)

δNᵢ = shape_value(cellvalues, q_point, i)
∇δNᵢ = shape_gradient(cellvalues, q_point, i)
Add heat source to fe
fe[i] += δNᵢ * dΩ
Loop over trial shape functions
for j in 1:getnbasefunctions(cellvalues)

∇Nⱼ = shape_gradient(cellvalues, q_point, j)
Add contribution to Ke
Ke[i, j] += (∇δNᵢ ⋅ ∇Nⱼ) * dΩ

end
end

end
return Ke, fe

end

Introduction to Ferrite.jl 10Kim Louisa Auth

Ferrite.jl

function element_routine!(Ke::Matrix, fe::Vector, cellvalues::CellValues, cellcoords::Vector)
Map shape function gradients etc. to current geometry
reinit!(cellvalues, cellcoords)
Loop over quadrature points
for q_point in 1:getnquadpoints(cellvalues)

Get the quadrature weight
dΩ = getdetJdV(cellvalues, q_point)
Loop over test shape functions
for i in 1:getnbasefunctions(cellvalues)

δNᵢ = shape_value(cellvalues, q_point, i)
∇δNᵢ = shape_gradient(cellvalues, q_point, i)
Add heat source to fe @ test function i
fe[i] += δNᵢ * dΩ
Loop over trial shape functions
for j in 1:getnbasefunctions(cellvalues)

∇Nⱼ = shape_gradient(cellvalues, q_point, j)
Add contribution to Ke @ test i, trial j
Ke[i, j] += (∇δNᵢ ⋅ ∇Nⱼ) * dΩ

end
end

end
return Ke, fe

end

Introduction to Ferrite.jl 11Kim Louisa Auth

Ferrite.jl

Assembly: Assemble cell contribution

Kim Louisa Auth Introduction to Ferrite.jl 12

function assemble_global(cellvalues::CellValues, dh::DofHandler)
Allocate global stiffness matrix, K, and force vector, f
K = allocate_matrix(dh)
f = zeros(ndofs(dh))
Allocate the element stiffness matrix and element force vector
n_basefuncs = getnbasefunctions(cellvalues)
Ke = zeros(n_basefuncs, n_basefuncs)
fe = zeros(n_basefuncs)

assembler = start_assemble(K, f) # Create an assembler
for cell in CellIterator(dh) # Loop over all cells

fill!(Ke, 0); fill!(fe, 0) # Reset Ke and fe
Compute element contribution
element_routine!(Ke, fe, cellvalues, getcoordinates(cell))
Assemble local, Ke and fe, into global, K and f
assemble!(assembler, celldofs(cell), Ke, fe)

end
return K, f

end

Ferrite.jl

Constraints: Dirichlet Boundary Conditions

Kim Louisa Auth Introduction to Ferrite.jl 13

grid, dh, cellvalues = setup() # Pseudocode, see earlier slides

K, f = assemble_global(cellvalues, dh)

ch = ConstraintHandler(dh);

∂Ω = union(getfacetset(grid, "left"), getfacetset(grid, "right"),
getfacetset(grid, "top"), getfacetset(grid, "bottom"));

add!(ch, Dirichlet(:u, ∂Ω, (x, t) -> 0))

close!(ch)

apply!(K, f, ch) # Modify K and f to fulfill constraints

Ferrite.jl

Putting it together: Stationary Heat Equation

Kim Louisa Auth Introduction to Ferrite.jl 14

u = K \ f # Solve linear system

Export solution
VTKGridFile("heat_equation", dh) do vtk

write_solution(vtk, dh, u)
end

https://ferrite-fem.github.io/

Ferrite.jl/dev/tutorials/heat_equation/

https://ferrite-fem.github.io/Ferrite.jl/dev/tutorials/heat_equation/
https://ferrite-fem.github.io/Ferrite.jl/dev/tutorials/heat_equation/
https://ferrite-fem.github.io/Ferrite.jl/dev/tutorials/heat_equation/
https://ferrite-fem.github.io/Ferrite.jl/dev/tutorials/heat_equation/
https://ferrite-fem.github.io/Ferrite.jl/dev/tutorials/heat_equation/

Ferrite.jl

Change Triangles to Quadrilateral?

Kim Louisa Auth Introduction to Ferrite.jl 15

Old setup
grid = generate_grid(Triangle, (20, 20));
ip = Lagrange{RefTriangle, 1}()
qr = QuadratureRule{RefTriangle}(2)

New setup
grid = generate_grid(Quadrilateral, (20, 20));
ip = Lagrange{RefQuadrilateral, 1}()
qr = QuadratureRule{RefQuadrilateral}(2)

Ferrite.jl

Change 2d to 3d?

Kim Louisa Auth Introduction to Ferrite.jl 16

Old setup
grid = generate_grid(Triangle, (20, 20));
ip = Lagrange{RefTriangle, 1}()
qr = QuadratureRule{RefTriangle}(2)

New setup
grid = generate_grid(Tetrahedron, (20, 20, 20));
ip = Lagrange{RefTetrahedron, 1}()
qr = QuadratureRule{RefTetrahedron}(2)

Ferrite.jl

Change to linear elasticity

Kim Louisa Auth Introduction to Ferrite.jl 17

Old setup
ip = Lagrange{RefTriangle, 1}()

New setup (vector problem in 2d)
ip = Lagrange{RefTriangle, 1}()^2

+ new physics

Ferrite.jl

Change to linear elasticity

Kim Louisa Auth Introduction to Ferrite.jl 18

function element_routine!(Ke::Matrix, fe::Vector, cv::CellValues, cellcoords::Vector)
reinit!(cv, cellcoords) # Map cellvalues to cell geometry
for q_point in 1:getnquadpoints(cv) # Loop over quadrature points

dΩ = getdetJdV(cv, q_point) # Get the quadrature weight
#=new=# C = calculate_stiffness(1.0, 2.0) # Stiffness from before

for i in 1:getnbasefunctions(cv) # Loop over test shape functions
δNᵢ = shape_value(cv, q_point, i)
∇δNᵢ = shape_gradient(cv, q_point, i)
fe[i] += δNᵢ * dΩ # Add heat source to fe

#=new=# fe[i] += (δNᵢ ⋅ Vec((0.0, -1.0)))* dΩ ⋅ # Add body force to fe
for j in 1:getnbasefunctions(cv) # Loop over trial shape functions

∇Nⱼ = shape_gradient(cv, q_point, j)
Ke[i, j] += (∇δNᵢ ⋅ ∇Nⱼ) * dΩ # Add contribution to Ke

#=new=# Ke[i, j] += (∇δNᵢ ⊡ C ⊡ ∇Nⱼ) * dΩ # Add contribution to Ke
end

end
end
return Ke, fe

end

fe[i] += δNᵢ * dΩ

Ke[i, j] += (∇δNᵢ ⋅ ∇Nⱼ) * dΩ

Ferrite.jl

More advanced cases:

Porous media, grid with mixed element shapes

Kim Louisa Auth Introduction to Ferrite.jl 19

Solid

aggregates

(Linear elasticity)

Porous

matrix

(Linear poro-

elasticity)

Ferrite.jl

More advanced cases:

Porous media, mixed grid

Kim Louisa Auth Introduction to Ferrite.jl 20

Define interpolations
Quadratic displacement, quad elements
ipu_quad = Lagrange{RefQuadrilateral, 2}()^2
Quadratic displacement, triangular elements
ipu_tri = Lagrange{RefTriangle, 2}()^2
Linear pressure, quad elements
ipp_quad = Lagrange{RefQuadrilateral, 1}()
Linear pressure, triangular elements
ipp_tri = Lagrange{RefTriangle, 1}()

Quadrature rules
qr_quad = QuadratureRule{RefQuadrilateral}(2) # 2x2 quadrature
qr_tri = QuadratureRule{RefTriangle}(2) # 3 quadrature points

Solid aggregates

Linear elasticity

Displacement u(x)

Quads and triangles

Porous matrix

Linear poro-elasticity

Pressure p(x), and displacement u(x)

Quads and triangles

Ferrite.jl

More advanced cases:

Porous media, mixed grid

Kim Louisa Auth Introduction to Ferrite.jl 21

Setup the DofHandler
dh = DofHandler(grid)
Solid quads
sdh_solid_quad = SubDofHandler(dh, getcellset(grid,"solid4"))
add!(sdh_solid_quad, :u, ipu_quad)
Solid triangles
sdh_solid_tri = SubDofHandler(dh, getcellset(grid,"solid3"))
add!(sdh_solid_tri, :u, ipu_tri)
Porous quads
sdh_porous_quad = SubDofHandler(dh, getcellset(grid, "porous4"))
add!(sdh_porous_quad, :u, ipu_quad)
add!(sdh_porous_quad, :p, ipp_quad)
Porous triangles
sdh_porous_tri = SubDofHandler(dh, getcellset(grid, "porous3"))
add!(sdh_porous_tri, :u, ipu_tri)
add!(sdh_porous_tri, :p, ipp_tri)

close!(dh)

Solid aggregates

Linear elasticity

Displacement u(x)

Quads and triangles

Porous matrix

Linear poro-elasticity

Pressure p(x), and displacement u(x)

Quads and triangles

Ferrite.jl

Navier-Stokes

Kim Louisa Auth Introduction to Ferrite.jl 22

Ferrite.jl

Some research examples

Kim Louisa Auth Introduction to Ferrite.jl 23

Ferrite.jl

Homogenization of Structural Batteries

Kim Louisa Auth Introduction to Ferrite.jl 24

David Rollin: Institute of Applied Mechanics, TU Braunschweig

Modeling interfacial behavior in electroactive materials

D. R. Rollin, F. Larsson, K. Runesson, and R. Jänicke, “Upscaling of chemo-mechanical properties of

battery electrode material,” Int. J. Solids Struct., vol. 281, no. February, p. 112405, 2023,

Ferrite.jl

Homogenization of Structural Batteries

Kim Louisa Auth Introduction to Ferrite.jl 25

David Rollin

D. R. Rollin, F. Larsson, K. Runesson, and R. Jänicke, “Upscaling of chemo-mechanical properties of

battery electrode material,” Int. J. Solids Struct., vol. 281, no. February, p. 112405, 2023,

Ferrite.jl

Cardiac Multiphysics

Kim Louisa Auth Introduction to Ferrite.jl 26

Dennis Ogiermann: Chair of Continuum Mechanics, Ruhr-Universität Bochum

D. Ogiermann, D. Balzani, and L. E. Perotti, “An Extended Generalized Hill Model for Cardiac Tissue: Comparison with

Different Approaches Based on Experimental Data,” in Functional Imaging and Modeling of the Heart, 2023, pp. 555–564.

Code:

github.com/termi-

official/Thunderbolt.jl

https://github.com/termi-official/Thunderbolt.jl
https://github.com/termi-official/Thunderbolt.jl
https://github.com/termi-official/Thunderbolt.jl
https://github.com/termi-official/Thunderbolt.jl
https://github.com/termi-official/Thunderbolt.jl

Ferrite.jl

Phase-field Fracture + Gradient Crystal Plasticity

Kim Louisa Auth Introduction to Ferrite.jl 27

Kim Louisa Auth: Division of Material and Computational Mechanics, Chalmers, Sweden /

Section of Solid Mechanics, DTU, Denmark

Auth, K. L., Brouzoulis, J., & Ekh, M. (2025).

Phase-Field Modeling of Ductile Fracture Across
Grain Boundaries in Polycrystals. International
Journal for Numerical Methods in Engineering,

126(12).

Ferrite.jl

• Documentation and examples: https://ferrite-fem.github.io/Ferrite.jl/

• Slack: https://julialang.org/slack/, and join #ferrite-fem

• Getting help

• Sharing code snippets

• Discussion about solving problems, theory, etc.

• Github

• Issues: Requesting features / reporting bugs

• PRs: Making fixes / enhancements

• Discussions: Asking questions

Community and documentation

Kim Louisa Auth Introduction to Ferrite.jl 28

https://ferrite-fem.github.io/Ferrite.jl/
https://ferrite-fem.github.io/Ferrite.jl/
https://ferrite-fem.github.io/Ferrite.jl/
https://julialang.org/slack/

Ferrite.jl

	Slide 1
	Slide 2: Outline
	Slide 3: What is Julia?
	Slide 4: History and users of Ferrite.jl
	Slide 5: FEM Puzzle Pieces: What does Ferrite provide?
	Slide 6: FEM Puzzle Pieces: How does Ferrite do that?
	Slide 8: DoF Distribution
	Slide 9: Assembly: Calculate cell contribution
	Slide 10
	Slide 11
	Slide 12: Assembly: Assemble cell contribution
	Slide 13: Constraints: Dirichlet Boundary Conditions
	Slide 14: Putting it together: Stationary Heat Equation
	Slide 15: Change Triangles to Quadrilateral?
	Slide 16: Change 2d to 3d?
	Slide 17: Change to linear elasticity
	Slide 18: Change to linear elasticity
	Slide 19: More advanced cases: Porous media, grid with mixed element shapes
	Slide 20: More advanced cases: Porous media, mixed grid
	Slide 21: More advanced cases: Porous media, mixed grid
	Slide 22: Navier-Stokes
	Slide 23: Some research examples
	Slide 24: Homogenization of Structural Batteries
	Slide 25: Homogenization of Structural Batteries
	Slide 26: Cardiac Multiphysics
	Slide 27: Phase-field Fracture + Gradient Crystal Plasticity
	Slide 28: Community and documentation
	Slide 29

