Tensors.|l

Efficient tensor computations with support for automatic differentiation

FerriteCon 2025

Kristoffer Carlsson
JuliaHub

Tensors in physics and engineering

Electromagnetism

e &: Permittivity tensor (rank 2).

Inertia and rotation

e I: Moment of inertia tensor (rank 2).

Stress—strain relations

o C: Stiffness tensor (rank 4).
e ¢: Strain tensor (rank 2).

e : Double contraction (A : b = A;;xby).

From continuum to finite elements

Weak form of balance of momentum

/Vu:a'dQ:/u-bdQ—l—/ u-tdl’
0 0 o0

Finite element discretization — linear elasticity

Shape function approximation:
u = Z Nzu,
i
“Stiffness matrix":
Kij = / VNz :C: VNJdQ
Q

Where:

e VN;: Shape function gradient (tensor)

e C.: Fourth-order elasticity tensor

FE assembly implementation

o Stiffness assembly for one element:

function assemble_stiffness! (K, C)
for (w, &) in quadrature_rule
VN = shape_gradients(§)
dQ = det(jacobian(§)) * w
for 1 in 1l:n_basefuncs, j in 1l:n_basefuncs
K[i,j]l += (VN[i] : C : VN[j]) % dQ
end
end
end

Questions

e How should we store YN[i] and C (possibly symmetric)?

e How should we compute C : VN[j] and other tensor operatoions?

Voigt format — storage

A technique to embed higher-order (possibly symmetric) tensors into standard linear algebra:
e Rank 2 tensors - Vectors
o General: 9 components (3D), 4 components (2D)
F = [F11, Fa2, Fi2, F]
o Symmetric: 6 components (3D), 3 components (2D)
o = |011,022,012]

e Rank 4 tensors - Matrices

o General: 9x9 (3D), 4x4 (2D) : D iy —

01111 01122 01112
o Symmetric: 6x6 (3D), 3%x3 (2D)Z Cijkl — 02211 02222 02212
01211 01222 01212

Voigt format — operations

e Double contraction (rank 4 and rank 2) - Matrix—vector product
C:VN; — Db

e Double contraction (rank 2 and rank 2) - dot product

S:E=S E
Voigt format - scaling off-diagonals

“Engineering strain” (different representation for stress and strain in symmetric tensors):

e 0= |011,022,012]
o € = [€11, €22, 2€12]
—T— oty
e o :. ¢ = o e still gives the correct energy.

¢ Mandel notation uses \/5 factor on both stress and strain.

Voigt format in FEM

From tensor loops to matrix operations

for 1 in 1l:n_basefuncs, j in 1l:n_basefuncs
K[i,jl += (VN[i] : C : VUN[j]) % dQ
end

becomes

for 1 in 1l:n_basefuncs, j in 1l:n_basefuncs
K[i,j]l += (b_i' % D % b_j) * dQ
end

where b_i = voigt(VN[i]) .

Voigt format in FEM

The "B-matrix"

Each b_i becomes a column in the B matrix:

B=[b; b, b,]

This yields the compact form: K = B' DB
blT
b,

B'=| |, DB=[Db; Db, --- Db,]
bT

-blTDbl blTDbz blTDbn-

. b;Dbl b;Dbz b;Dbn
B DB =

b;Dbl b,IDbg bZDbn

Each element: K;; = (B'DB);; = b,/ Db;

Drawbacks of Voigt

Based on personal experience teaching (and using) FEM with Voigt:

e Easy to forget scaling factors for shear terms for strains.
e The "B-matrix” becomes a somewhat magical object that loses correspondence to the FEM formulation.

e Generic linear algebra operations are slow for such small sizes.

Tensors.jl

Code:: https://github.com/Ferrite-FEM/Tensors. ||

Paper: Carlsson, K. & Ekre, F. (2019). Tensors.jl — Tensor Computations in Julia. Journal of Open Research Software, 7:7

Some history

e Feb 2016: Created as ContMechTensors.jl (commit).
e Intended as an alternative to "raw" Voigt form for FEM codes.
e Mar 2016: Integrated into Ferrite (then JUAFEM) (PR #51).

Made Ferrite code more similar to the mathematical description.

o

Made the code less mutating, better performance:

o

— @inline function function_scalar_gradient!{dim, T}(grad::Vector{T}, ...
+ @inline function function_scalar_gradient{dim, T}(...)

o Okay, maybe that's another issue then, that only we are using it? ;) We need to spread the word!

10

https://github.com/Ferrite-FEM/Tensors.jl
https://openresearchsoftware.metajnl.com/articles/10.5334/jors.182
https://openresearchsoftware.metajnl.com/articles/10.5334/jors.182
https://openresearchsoftware.metajnl.com/articles/10.5334/jors.182
https://github.com/Ferrite-FEM/Tensors.jl/commit/a6e8ecabcaf315313e92af593cb8f576379aa9a0
https://github.com/Ferrite-FEM/Ferrite.jl/pull/51
https://github.com/Ferrite-FEM/Ferrite.jl/pull/51#issuecomment-204415156

Basic usage - Creating tensors

julia> v = rand(Vec{2})
2—-element Vec{2, Float64}:
0.4518004270728473
0.9514979486051207

[Symmetric]Tensor{order, dim, T}

julia> S = SymmetricTensor{2,2,Float64}((i,j) — i + j)
2x2 SymmetricTensor{2, 2, Float64, 3}:

2.0 3.0

3.0 4.0

julia> sizeof(S) # only symmetric part stored
24

julia> one(Tensor{4, 2})
2x2x2x2 Tensor{4, 2, Float64, 16}:
[:, =, 1, 1] =

1.0 0.0
0.0 0.0

11

Basic usage — Basic operations

Dot product (single contraction)

a=—B:.-c <« ai:Bijcj

julia> B = rand(Tensor{2,2}); c = rand(Vec{2});

julia> a =B + ¢ # or dot(B, c)
2-element Vec{2, Float64}:
0.2973081283150573
0.5776654547151459

Double contraction

A=C:B <« Az’j = Cijlekl

julia> C = rand(SymmetricTensor{4,2}); B

julia> A = Cwm B # or dcontract(C, B)
2x2 SymmetricTensor{2, 2, Float64, 3}:
1.30202 1.11747
1.11747 ©.50486

e Symmetry is preserved in the tvpe.

rand(SymmetricTensor{2,2});

12

Basic usage — More operations

Tensor product (outer product)
A=b®c <~ Aij — biCj, D=B®C <~ Dijkl = BijCkl

julia> b = rand(Vec{2}); c = rand(Vec{2});
julia> A = b ® ¢ # or otimes(b, c)
2x2 Tensor{2, 2, Float64, 4}:

0.620584 0.331023
0.270906 0.144503

o otimesu(A, B) :"Upper" product A;;, B
e otimesl(A, B) :"Lower" product A; B

Norm, trace, determinant

|All=VA:A, tr(A)=A4;, det(A)

julia> A = rand(SymmetricTensor{2,2});

julia> norm(A), tr(A), det(A)
(0.5889762248690359, 0.5098257705880324, -0.043485338552650056)

13

Basic usage — Additional operations

Transpose and symmetry operations
e transpose(A) :A;T’;- — W8

e symmetric(A) : A™ = %(A + AT)
o skew(A) : AW = %(A — AT)

Tensor decompositions
e dev(A) : Deviatoric part A% = A — +tr(A)I
e vol(A) : Volumetric part A" = %tr(A)I
Other operations

e inv(A) : Matrix inverse
e sqrt(A) : Tensor square root (for symmetric positive definite)
e eigen(A) : Eigenvalues/eigenvectors

e tdot(F) : F'' - F (transpose dot, returns symmetric tensor)

14

Basic usage — performance

e Operations are specialized on size and element type

e Uses tuples internally for non-allocating operations

julia> t = rand(Tensor{4,3});

julia> length(t)
81

julia> @btime $t + $t
11.721 ns (0 allocations: @ bytes)
?X3X3x3 Ten?or{4, 3, Float64, 81}:
, o, 1, 1] =
1.73626 1.92998 1.34596
1.12944 1.83721 0.1809
0.278972 1.39517 0.0216357

e Uses SIMD instructions (more on that later)

julia> @code_llvm debuginfo=:none t+t

..%21 = load <4 x double>, ptr ...
%22 = load <4 x double>, ptr ...
%23 = fadd <4 x double> %21, %22

15

Storage format
e Started with just wrapping arrays (basically Voigt under the hood):

immutable Tensor{order, dim, T <: Number, M} <: AbstractTensor{order, dim, T, M}

data::Array{T, M}
end

- All operations allocated memory.

e Quickly moved to tuples (julia just got good support for tuples). Made operations specialize on tuple size and avoid

allocations:

immutable Tensor{order, dim, T <: Real, M} <: AbstractTensor{order, dim, T}

data::NTuple{M, T}
end

e Tried wrapping StaticArrays. Removed later since it provided little benefit:

immutable Tensor{order, dim, T <: Real, M} <: AbstractTensor{order, dim, T}

data::SVector{M, T}
end

16

Automatic differentiation

e Tensor could be used inside functions that were automatically differentiated.

e But one could not directly use AD on tensor functions to return tensors.

Function Types and Gradients

Input Type Output Type Gradient Type Hessian Type Mathematical Form

_0f _ 0
Vec Scalar Vec Tensor{2} Vf= Ix ? H = 0x0x
of 0% f
Tensor{2} Scalar Tensor{2} Tensor{4} 38° DADA
Vec Vec Tensor{2} - J = g_i
Tensor{2} Tensor{2} Tensor{4} - 3—§

e Support for gradient and hessian : Dec 10, 2016
e Support for curl, divergence ,and laplace : Sep 27, 2017 (Fredrik Ekre)

Automatic differentiation — examples

Norm of a vector

f)=lxl = 4=

(23l

julia> x = rand(Vec{2});

julia> gradient(norm, x)

2—-element Vec{2, Float64}:
0.5105128363207563
0.859870132026771

julia> x / norm(x) # analytical solution
2-element Vec{2, Float64}:
0.5105128363207563

0.8598701320267711

18

Automatic differentiation — examples

Determinant of a symmetric tensor

f(A)=detA = 2L —det(A)A T

julia> A = rand(SymmetricTensor{2,2});

julia> gradient(det, A)

2x2 SymmetricTensor{2, 2, Float64, 3}:
0.218587 -0.549051

-0.549051 0.325977

julia> inv(A)' % det(A) # analytical: A™(-T) *x det(A)
2x2 SymmetricTensor{2, 2, Float64, 3}:

0.218587 -0.549051
-0.549051 0.325977

19

Automatic differentiation — examples

Hessian of a quadratic potential

@b(e):%e:E:e = af;%e — gsym

where ESY™ is the major-symmetric part of E.

julia> const E = rand(SymmetricTensor{4,3});
julia> y(e) = 1/2 x € @ E & €;
julia> € = rand(SymmetricTensor{2,3});

julia> E = @btime hessian(y, $€)

317.441 ns (0 allocations: 0 bytes)
3x3x3x3 SymmetricTensor{4, 3, Float64, 36}:
[, :, 1, 1] =

0.26313 0.57441 0.337005

julia> norm(majorsymmetric(E) - E)
0.0

20

Implementing custom gradients

If the function is a "black box" (maybe calls into C) or have an analytical form that is much
more efficient than the automatic AD it can be added with:

@implement_gradient(f, f_dfdx)

e f_dfdx must return both the value and the gradient: fval, dfdx_val = f_dfdx(x)
e Called automatically when f is usedin AD contexts
e Added by Knut Andreas Meyer in Jan 26, 2022

21

Implementing custom gradients

Define functions
h(x) = norm(x)
f(x) = x = X

Composed functions
cfun(x) = h(f(dev(x)))

Define analytical derivative for f: 9(A-A)/0A = A®I + I®A
function dfdx(x::Tensor{2,dim}) where {dim}
println("Calling analytical gradient")
I2 = one(Tensor{2,dim})
dfdx_val = otimesu(I2, transpose(x)) + otimesu(x, I2)
return f(x), dfdx_val
end

Register the custom gradient
@implement_gradient f dfdx

X = rand(Tensor{2, 2})

julia> gradient(cfun, x)
Calling analytical gradient
2x2 Tensor{2, 2, Float64, 4}:
0.432701 0.450401
0.546796 -0.0714608

22

Automatic Differentiation — Implementation

e Uses Dual numbers from ForwardDiff.jl.

¢ Insert seeded partials into the tensor, call the function, and extract the result into the corresponding tensor type:

Adual =A + Z €€, f(Adual) — f(A) + Z 8f €;

julia> A = rand(Tensor{2,2});

julia> Tensors.gradient(det, A)

2x2 Tensor{2, 2, Float64, 4}:
0.791411 -0.234868

-0.524795 0.447615

julia> A_dual = Tensors._load(A, nothing)

2x2 Tensor{2, 2, ForwardDiff.Dual{Nothing, Float64, 4}, 4}:
Dual{Nothing}(0.447615,1.0,0.0,0.0,0.0) Dual{Nothing}(0.524795,0.0,0.0,1.0,0.0)
Dual{Nothing}(0.234868,0.0,1.0,0.0,0.0) Dual{Nothing}(0.791411,0.0,0.0,0.0,1.0)

julia> det_dual = det(A_dual)
Dual{Nothing}(0.2309897180432929,0.7914111588502826,-0.52479490941829,-0.23486806142451777,0.4476147159441781)

julia> Tensors._extract_gradient(det_dual, A_dual)
2x2 Tensor{2, 2, Float64, 4}:

0.791411 -0.234868
-0.524795 0.447615

Automatic Differentiation - Implementation
e Actual code....

@inline function _extract_gradient(v::Tensor{2, 3, <: Dual}, ::Tensor{2, 3})
@inbounds begin

pl, p2, p3 = partials(v[1,1]), partials(v([2,1]), partials(vI[3,1])

p4, p5, p6 = partials(v[1,2]), partials(v([2,2]), partials(vI[3,2])

p7, p8, p9 = partials(v[1,3]), partials(vI[2,3]), partials(v([3,3])

vf = Tensor{4, 3}((p1l[1], p2[1], p3I[1], p4l1], p5I[1], p6l[1], p7[1], p8I[1], p9l1],
pl[2]1, p2[2], p3[2], p4l[2], p5I[2], p6I[2]1, p7[2], p8I2], p9l2], # #H# #
pl[3]1, p2[3], p3[3], p4l[3], p5[3], p6I[31, p7[3], p8I3], p9l[3], # #t# #
pl[4], p2[4], p3[4], p4l4], p5[4], p6l4], p7[4], p8[4], p9l[4], ### ### ###
pl[(5], p2[(5], p3[5], p4l(5], p5[5], p6[5], p7[5], p8I[5], p9Il5],
pl[6], p2[6], p3[6], p4l6]l, p5[6], p6[6], p7[6], P8[6], P9I[6],
pl1[7], p2[7], p3[7], p4l7]1, p5[7]1, p6l[7], p7[7], p8I7]1, p9l7],
pl[(8], p2[8], p3[8], p4l8], p5[8], p6[8], p7[8], p8[8], p9l8],
p1[9], p2[91, p3[91, p4[9], p5[9]1, p6I[9]1, p7[9], p8I[9]1, p9I[9]))

Automatic Differentiation -- Implementation
Implementation of Hessian is quite aesthetically pleasing.

function hessian(f::F, v::Union{SecondOrderTensor, Vec, Number}) where {F}
gradf = y —> gradient(f, vy)
return gradient(gradf, v)

end

25

Automatic Differentiation -- Special handling for symmetric tensors

e For symmetric tensors, without special consideration for off-diagonals, a perturbation of off-diagonals give double
contribution compared to diagonal entries.

. a':a'=0%1—|—032—|—2(7%2.

e Need to compensate by giving half weight to duals for off diagonals

SymmetricTensor{2,2}((Dual(datal1], 1, 0, 0), # (1,1) component
Dual(datal2], 0, 1/2, 0), # (1,2) component
Dual(datal3], 0, 0, 1))) # (2,2) component

26

Explicit SIMD

Added by Fredrik Ekre in Mar 16, 2017.
Uses SIMD.|I

SLP vectorizer optimizer pass (to turn tuple operations into SIMD) used to be enabled in Julia only with -03 .

The SLP vectorizer in LLVM was not that great at that time, explicit SIMD often gave decent speedups.

Double contraction C : € = C’ijklskl = o ;; (4th-order with 2nd-order tensor):

function dcontract(S1::Tensor{4, 2, T}, S2::Tensor{2, 2, T}) where {T <: SIMDTypes}
D1 = get_data(S1); D2 = get_data(S2)

Load 4th-order tensor slices: C[ij,:,:] for each (i,j)

SV11l = tosimd(D1, Val{1}, Val{4}) # C[1111, 1112, 1121, 1122]
SV12 = tosimd(D1, Val{5}, Val{8}) # C[1211, 1212, 1221, 1222]
SV13 = tosimd(D1, Val{9}, Val{12}) # C[2111, 2112, 2121, 2122]
SV14 = tosimd(D1, Val{13}, Val{16}) # C[2211, 2212, 2221, 2222]

Computes all 4 o components simultaneously:
ol11], ol[12], ol[21], o[22] = each SV_ij dotted with [g11l, €12, €21, €22]
r = muladd(SvV14, D2[4], muladd(SV13, D2[3], muladd(SVv12, D2[2], SV11 x D2I[1])))
return Tensor{2, 2}(r) # r = [0ll, 012, 021, 022] as SIMD vector
end

e simd.jl file

https://github.com/Ferrite-FEM/Tensors.jl/blob/master/src/simd.jl

Explicit SIMD needed in modern Julia?

e May no longer be needed (SLP is good enough?).
e PR to remove: https://github.com/Ferrite-FEM/Tensors.jl/pull/93
o “Probably not needed with llvm6 and SLP vectorization enabled by default”

e Julia now uses LLVM = 15...

28

https://github.com/Ferrite-FEM/Tensors.jl/pull/93

Tensors2.jl or a refresh of Tensors.jl?

e Most of Tensors.jl was written when Julia's compiler (and LLVM) was much less capable (almost a decade ago!).

(Authors of the code were also much less capable Julia programmers)

Lots of code repetition, code generation, @generated , @inline , @pure , etc.

Today it should be possible to write a significantly smaller Tensors.jl with the same performance and capability.

With better abstractions and design, things like third-order tensors and mixed-order tensors might “just work",

On the other hand:

e Tensors.jl already works quite well.
e Good performance, few bugs, decent latency.

o Arewrite solely for the sake of rewriting is rarely an efficient use of time.

29

Thank You!

Questions?

30

