
Tensors.jl

Efficient tensor computations with support for automatic differentiation

FerriteCon 2025

Kristoffer Carlsson
JuliaHub

1

Tensors in physics and engineering

Electromagnetism

: Permittivity tensor (rank 2).

Inertia and rotation

: Moment of inertia tensor (rank 2).

Stress–strain relations

: Stiffness tensor (rank 4).

: Strain tensor (rank 2).

 Double contraction ().

2

From continuum to finite elements

Weak form of balance of momentum

Finite element discretization – linear elasticity

Shape function approximation:

“Stiffness matrix”:

Where:

: Shape function gradient (tensor)

: Fourth-order elasticity tensor 3

FE assembly implementation

Stiffness assembly for one element:

function assemble_stiffness!(K, C)
 for (w, ξ) in quadrature_rule
 ∇N = shape_gradients(ξ)
 dΩ = det(jacobian(ξ)) * w
 for i in 1:n_basefuncs, j in 1:n_basefuncs
 K[i,j] += (∇N[i] : C : ∇N[j]) * dΩ
 end
 end
end

Questions

How should we store ∇N[i] and C (possibly symmetric)?

How should we compute C : ∇N[j] and other tensor operatoions?

4

Voigt format – storage

A technique to embed higher-order (possibly symmetric) tensors into standard linear algebra:

Rank 2 tensors → Vectors

General: 9 components (3D), 4 components (2D)

Symmetric: 6 components (3D), 3 components (2D)

Rank 4 tensors → Matrices

General: 9×9 (3D), 4×4 (2D) :

Symmetric: 6×6 (3D), 3×3 (2D):
5

Voigt format – operations

Double contraction (rank 4 and rank 2) → Matrix–vector product

Double contraction (rank 2 and rank 2) → dot product

Voigt format – scaling off-diagonals

“Engineering strain” (different representation for stress and strain in symmetric tensors):

 still gives the correct energy.

Mandel notation uses factor on both stress and strain.

6

Voigt format in FEM

From tensor loops to matrix operations

for i in 1:n_basefuncs, j in 1:n_basefuncs
 K[i,j] += (∇N[i] : C : ∇N[j]) * dΩ
end

becomes

for i in 1:n_basefuncs, j in 1:n_basefuncs
 K[i,j] += (b_i' * D * b_j) * dΩ
end

where b_i = voigt(∇N[i]) .

7

Voigt format in FEM

The "B-matrix"

Each b_i becomes a column in the matrix:

This yields the compact form:

Each element:
8

Drawbacks of Voigt

Based on personal experience teaching (and using) FEM with Voigt:

Easy to forget scaling factors for shear terms for strains.

The “B-matrix” becomes a somewhat magical object that loses correspondence to the FEM formulation.

Generic linear algebra operations are slow for such small sizes.

9

Tensors.jl

Code:: https://github.com/Ferrite-FEM/Tensors.jl

Paper: Carlsson, K. & Ekre, F. (2019). Tensors.jl — Tensor Computations in Julia. Journal of Open Research Software, 7:7

Some history

Feb 2016: Created as ContMechTensors.jl (commit).

Intended as an alternative to "raw" Voigt form for FEM codes.

Mar 2016: Integrated into Ferrite (then JuAFEM) (PR #51).

Made Ferrite code more similar to the mathematical description.

Made the code less mutating, better performance:

- @inline function function_scalar_gradient!{dim, T}(grad::Vector{T}, ...
+ @inline function function_scalar_gradient{dim, T}(...)

Okay, maybe that's another issue then, that only we are using it? ;) We need to spread the word!

10

https://github.com/Ferrite-FEM/Tensors.jl
https://openresearchsoftware.metajnl.com/articles/10.5334/jors.182
https://openresearchsoftware.metajnl.com/articles/10.5334/jors.182
https://openresearchsoftware.metajnl.com/articles/10.5334/jors.182
https://github.com/Ferrite-FEM/Tensors.jl/commit/a6e8ecabcaf315313e92af593cb8f576379aa9a0
https://github.com/Ferrite-FEM/Ferrite.jl/pull/51
https://github.com/Ferrite-FEM/Ferrite.jl/pull/51#issuecomment-204415156

Basic usage – Creating tensors

julia> v = rand(Vec{2})
2-element Vec{2, Float64}:
 0.4518004270728473
 0.9514979486051207

[Symmetric]Tensor{order, dim, T}
julia> S = SymmetricTensor{2,2,Float64}((i,j) -> i + j)
2×2 SymmetricTensor{2, 2, Float64, 3}:
 2.0 3.0
 3.0 4.0

julia> sizeof(S) # only symmetric part stored
24

julia> one(Tensor{4, 2})
2×2×2×2 Tensor{4, 2, Float64, 16}:
[:, :, 1, 1] =
 1.0 0.0
 0.0 0.0
...

11

Basic usage – Basic operations

Dot product (single contraction)

julia> B = rand(Tensor{2,2}); c = rand(Vec{2});

julia> a = B ⋅ c # or dot(B, c)
2-element Vec{2, Float64}:
 0.2973081283150573
 0.5776654547151459

Double contraction

julia> C = rand(SymmetricTensor{4,2}); B = rand(SymmetricTensor{2,2});

julia> A = C ⊡ B # or dcontract(C, B)
2×2 SymmetricTensor{2, 2, Float64, 3}:
 1.30202 1.11747
 1.11747 0.50486

Symmetry is preserved in the type.
12

Basic usage – More operations

Tensor product (outer product)

julia> b = rand(Vec{2}); c = rand(Vec{2});

julia> A = b ⊗ c # or otimes(b, c)
2×2 Tensor{2, 2, Float64, 4}:
 0.620584 0.331023
 0.270906 0.144503

otimesu(A, B) : "Upper" product

otimesl(A, B) : "Lower" product

Norm, trace, determinant

julia> A = rand(SymmetricTensor{2,2});

julia> norm(A), tr(A), det(A)
(0.5889762248690359, 0.5098257705880324, -0.043485338552650056) 13

Basic usage – Additional operations

Transpose and symmetry operations

transpose(A) :

symmetric(A) :

skew(A) :

Tensor decompositions

dev(A) : Deviatoric part

vol(A) : Volumetric part

Other operations

inv(A) : Matrix inverse

sqrt(A) : Tensor square root (for symmetric positive definite)

eigen(A) : Eigenvalues/eigenvectors

tdot(F) : (transpose dot, returns symmetric tensor)

14

Basic usage – performance

Operations are specialized on size and element type

Uses tuples internally for non-allocating operations

julia> t = rand(Tensor{4,3});

julia> length(t)
81

julia> @btime $t + $t
 11.721 ns (0 allocations: 0 bytes)
3×3×3×3 Tensor{4, 3, Float64, 81}:
[:, :, 1, 1] =
 1.73626 1.92998 1.34596
 1.12944 1.83721 0.1809
 0.278972 1.39517 0.0216357

Uses SIMD instructions (more on that later)

julia> @code_llvm debuginfo=:none t+t
...
 %21 = load <4 x double>, ptr ...
 %22 = load <4 x double>, ptr ...
 %23 = fadd <4 x double> %21, %22
...

15

Storage format

Started with just wrapping arrays (basically Voigt under the hood):

immutable Tensor{order, dim, T <: Number, M} <: AbstractTensor{order, dim, T, M}
 data::Array{T, M}
end

→ All operations allocated memory.

Quickly moved to tuples (julia just got good support for tuples). Made operations specialize on tuple size and avoid
allocations:

immutable Tensor{order, dim, T <: Real, M} <: AbstractTensor{order, dim, T}
 data::NTuple{M, T}
end

Tried wrapping StaticArrays. Removed later since it provided little benefit:

immutable Tensor{order, dim, T <: Real, M} <: AbstractTensor{order, dim, T}
 data::SVector{M, T}
end

16

Automatic differentiation

Tensor could be used inside functions that were automatically differentiated.

But one could not directly use AD on tensor functions to return tensors.

Function Types and Gradients

Input Type Output Type Gradient Type Hessian Type Mathematical Form

Vec Scalar Vec Tensor{2}

Tensor{2} Scalar Tensor{2} Tensor{4}

Vec Vec Tensor{2} –

Tensor{2} Tensor{2} Tensor{4} –

Support for gradient and hessian : Dec 10, 2016

Support for curl , divergence , and laplace : Sep 27, 2017 (Fredrik Ekre)

17

Automatic differentiation – examples

Norm of a vector

julia> x = rand(Vec{2});

julia> gradient(norm, x)
2-element Vec{2, Float64}:
 0.5105128363207563
 0.859870132026771

julia> x / norm(x) # analytical solution
2-element Vec{2, Float64}:
 0.5105128363207563
 0.8598701320267711

18

Automatic differentiation – examples

Determinant of a symmetric tensor

julia> A = rand(SymmetricTensor{2,2});

julia> gradient(det, A)
2×2 SymmetricTensor{2, 2, Float64, 3}:
 0.218587 -0.549051
 -0.549051 0.325977

julia> inv(A)' * det(A) # analytical: A^(-T) * det(A)
2×2 SymmetricTensor{2, 2, Float64, 3}:
 0.218587 -0.549051
 -0.549051 0.325977

19

Automatic differentiation – examples

Hessian of a quadratic potential

where is the major-symmetric part of .

julia> const E = rand(SymmetricTensor{4,3});

julia> ψ(ϵ) = 1/2 * ϵ ⊡ E ⊡ ϵ;

julia> ϵ = rand(SymmetricTensor{2,3});

julia> E = @btime hessian(ψ, $ϵ)
 317.441 ns (0 allocations: 0 bytes)
3×3×3×3 SymmetricTensor{4, 3, Float64, 36}:
[:, :, 1, 1] =
 0.26313 0.57441 0.337005

julia> norm(majorsymmetric(E) - E)
0.0

20

Implementing custom gradients

If the function is a "black box" (maybe calls into C) or have an analytical form that is much
more efficient than the automatic AD it can be added with:

@implement_gradient(f, f_dfdx)

f_dfdx must return both the value and the gradient: fval, dfdx_val = f_dfdx(x)

Called automatically when f is used in AD contexts

Added by Knut Andreas Meyer in Jan 26, 2022

21

Implementing custom gradients

Define functions
h(x) = norm(x)
f(x) = x ⋅ x

Composed functions
cfun(x) = h(f(dev(x)))

Define analytical derivative for f: ∂(A⋅A)/∂A = A⊗I + I⊗A
function dfdx(x::Tensor{2,dim}) where {dim}
 println("Calling analytical gradient")
 I2 = one(Tensor{2,dim})
 dfdx_val = otimesu(I2, transpose(x)) + otimesu(x, I2)
 return f(x), dfdx_val
end

Register the custom gradient
@implement_gradient f dfdx

x = rand(Tensor{2, 2})

julia> gradient(cfun, x)
Calling analytical gradient
2×2 Tensor{2, 2, Float64, 4}:
 0.432701 0.450401
 0.546796 -0.0714608

22

Automatic Differentiation – Implementation

Uses Dual numbers from ForwardDiff.jl .

Insert seeded partials into the tensor, call the function, and extract the result into the corresponding tensor type:

julia> A = rand(Tensor{2,2});

julia> Tensors.gradient(det, A)
2×2 Tensor{2, 2, Float64, 4}:
 0.791411 -0.234868
 -0.524795 0.447615

julia> A_dual = Tensors._load(A, nothing)
2×2 Tensor{2, 2, ForwardDiff.Dual{Nothing, Float64, 4}, 4}:
 Dual{Nothing}(0.447615,1.0,0.0,0.0,0.0) Dual{Nothing}(0.524795,0.0,0.0,1.0,0.0)
 Dual{Nothing}(0.234868,0.0,1.0,0.0,0.0) Dual{Nothing}(0.791411,0.0,0.0,0.0,1.0)

julia> det_dual = det(A_dual)
Dual{Nothing}(0.2309897180432929,0.7914111588502826,-0.52479490941829,-0.23486806142451777,0.4476147159441781)

julia> Tensors._extract_gradient(det_dual, A_dual)
2×2 Tensor{2, 2, Float64, 4}:
 0.791411 -0.234868
 -0.524795 0.447615 23

Automatic Differentiation - Implementation

Actual code...:

@inline function _extract_gradient(v::Tensor{2, 3, <: Dual}, ::Tensor{2, 3})
 @inbounds begin
 p1, p2, p3 = partials(v[1,1]), partials(v[2,1]), partials(v[3,1])
 p4, p5, p6 = partials(v[1,2]), partials(v[2,2]), partials(v[3,2])
 p7, p8, p9 = partials(v[1,3]), partials(v[2,3]), partials(v[3,3])
 ∇f = Tensor{4, 3}((p1[1], p2[1], p3[1], p4[1], p5[1], p6[1], p7[1], p8[1], p9[1],
 p1[2], p2[2], p3[2], p4[2], p5[2], p6[2], p7[2], p8[2], p9[2], # ### #
 p1[3], p2[3], p3[3], p4[3], p5[3], p6[3], p7[3], p8[3], p9[3], # # # #
 p1[4], p2[4], p3[4], p4[4], p5[4], p6[4], p7[4], p8[4], p9[4], ### ### ###
 p1[5], p2[5], p3[5], p4[5], p5[5], p6[5], p7[5], p8[5], p9[5],
 p1[6], p2[6], p3[6], p4[6], p5[6], p6[6], p7[6], p8[6], p9[6],
 p1[7], p2[7], p3[7], p4[7], p5[7], p6[7], p7[7], p8[7], p9[7],
 p1[8], p2[8], p3[8], p4[8], p5[8], p6[8], p7[8], p8[8], p9[8],
 p1[9], p2[9], p3[9], p4[9], p5[9], p6[9], p7[9], p8[9], p9[9]))

24

Automatic Differentiation -- Implementation

Implementation of Hessian is quite aesthetically pleasing.

function hessian(f::F, v::Union{SecondOrderTensor, Vec, Number}) where {F}
 gradf = y -> gradient(f, y)
 return gradient(gradf, v)
end

25

Automatic Differentiation -- Special handling for symmetric tensors

For symmetric tensors, without special consideration for off-diagonals, a perturbation of off-diagonals give double
contribution compared to diagonal entries.

.

Need to compensate by giving half weight to duals for off diagonals

SymmetricTensor{2,2}((Dual(data[1], 1, 0, 0), # (1,1) component
 Dual(data[2], 0, 1/2, 0), # (1,2) component
 Dual(data[3], 0, 0, 1))) # (2,2) component

26

Explicit SIMD

Added by Fredrik Ekre in Mar 16, 2017.

Uses SIMD.jl

SLP vectorizer optimizer pass (to turn tuple operations into SIMD) used to be enabled in Julia only with -O3 .

The SLP vectorizer in LLVM was not that great at that time, explicit SIMD often gave decent speedups.

Double contraction (4th-order with 2nd-order tensor):

function dcontract(S1::Tensor{4, 2, T}, S2::Tensor{2, 2, T}) where {T <: SIMDTypes}
 D1 = get_data(S1); D2 = get_data(S2)
 # Load 4th-order tensor slices: C[ij,:,:] for each (i,j)
 SV11 = tosimd(D1, Val{1}, Val{4}) # C[1111, 1112, 1121, 1122]
 SV12 = tosimd(D1, Val{5}, Val{8}) # C[1211, 1212, 1221, 1222]
 SV13 = tosimd(D1, Val{9}, Val{12}) # C[2111, 2112, 2121, 2122]
 SV14 = tosimd(D1, Val{13}, Val{16}) # C[2211, 2212, 2221, 2222]

 # Computes all 4 σ components simultaneously:
 # σ[11], σ[12], σ[21], σ[22] = each SV_ij dotted with [ε11, ε12, ε21, ε22]
 r = muladd(SV14, D2[4], muladd(SV13, D2[3], muladd(SV12, D2[2], SV11 * D2[1])))
 return Tensor{2, 2}(r) # r = [σ11, σ12, σ21, σ22] as SIMD vector
end

simd.jl file 27

https://github.com/Ferrite-FEM/Tensors.jl/blob/master/src/simd.jl

Explicit SIMD needed in modern Julia?

May no longer be needed (SLP is good enough?).

PR to remove: https://github.com/Ferrite-FEM/Tensors.jl/pull/93

“Probably not needed with llvm6 and SLP vectorization enabled by default”

Julia now uses LLVM ≥ 15...

28

https://github.com/Ferrite-FEM/Tensors.jl/pull/93

Tensors2.jl or a refresh of Tensors.jl?

Most of Tensors.jl was written when Julia’s compiler (and LLVM) was much less capable (almost a decade ago!).

(Authors of the code were also much less capable Julia programmers)

Lots of code repetition, code generation, @generated , @inline , @pure , etc.

Today it should be possible to write a significantly smaller Tensors.jl with the same performance and capability.

With better abstractions and design, things like third-order tensors and mixed-order tensors might “just work”.

On the other hand:

Tensors.jl already works quite well.

Good performance, few bugs, decent latency.

A rewrite solely for the sake of rewriting is rarely an efficient use of time.

29

Thank You!

Questions?

30

